7 research outputs found

    Improved Dual Network Model for Aging of Rubber Composites under Set Strains

    Get PDF
    A new model is presented to predict rubber behavior during chemical aging at fixed strains. The model is validated using a carbon black-filled nitrile butadiene rubber aged in air at 125 °C. The model improves upon Tobolsky’s dual network theory, designed for unfilled elastomers undergoing conventional aging but which has also often been used in rubber composites undergoing more complex aging scenarios. This work explores the shortcomings of the original model and demonstrates how the new model overcomes them. The model was validated using uniaxial tensile samples aged at 125 °C for 24–72 h at strains from 0–30%. The permanent set was measured, and the samples were tested on an Instron uniaxial test machine after aging. The cross-link density was estimated by equilibrium swelling. Results show that the new model more accurately models the stress–strain behavior to higher strains and provides more reliable estimates of chain scission and cross-linking after aging

    Performance on the Frontal Assessment Battery is sensitive to frontal lobe damage in stroke patients

    Get PDF
    Background: The Frontal Assessment Battery (FAB) is a brief battery of six neuropsychological tasks designed to assess frontal lobe function at bedside [Neurology 55:1621-1626, 2000]. The six FAB tasks explore cognitive and behavioral domains that are thought to be under the control of the frontal lobes, most notably conceptualization and abstract reasoning, lexical verbal fluency and mental flexibility, motor programming and executive control of action, self-regulation and resistance to interference, inhibitory control, and environmental autonomy. Methods: We examined the sensitivity of performance on the FAB to frontal lobe damage in right-hemisphere-damaged first-ever stroke patients based on voxel-based lesion-behavior mapping. Results: Voxel-based lesion-behavior mapping of FAB performance revealed that the integrity of the right anterior insula (BA13) is crucial for the FAB global composite score, for the FAB conceptualization score, as well as for the FAB inhibitory control score. Furthermore, the FAB conceptualization and mental flexibility scores were sensitive to damage of the right middle frontal gyrus (MFG; BA9). Finally, the FAB inhibitory control score was sensitive to damage of the right inferior frontal gyrus (IFG; BA44/45). Conclusions: These findings indicate that several FAB scores (including composite and item scores) provide valid measures of right hemispheric lateral frontal lobe dysfunction, specifically of focal lesions near the anterior insula, in the MFG and in the IFG
    corecore