93 research outputs found
Genetic Variants of Human Granzyme B Predict Transplant Outcomes after HLA Matched Unrelated Bone Marrow Transplantation for Myeloid Malignancies
Serine protease granzyme B plays important roles in infections, autoimmunity, transplant rejection, and antitumor immunity. A triple-mutated granzyme B variant that encodes three amino substitutions (Q48R, P88A, and Y245H) has been reported to have altered biological functions. In the polymorphism rs8192917 (2364A>G), the A and G alleles represent wild type QPY and RAH mutant variants, respectively. In this study, we analyzed the impact of granzyme B polymorphisms on transplant outcomes in recipients undergoing unrelated HLA-fully matched T-cell-replete bone marrow transplantation (BMT) through the Japan Donor Marrow Program. The granzyme B genotypes were retrospectively analyzed in a cohort of 613 pairs of recipients with hematological malignancies and their unrelated donors. In patients with myeloid malignancies consisting of acute myeloid leukemia and myelodysplastic syndrome, the donor G/G or A/G genotype was associated with improved overall survival (OS; adjusted hazard ratio [HR], 0.60; 95% confidence interval [CI], 0.41–0.89; P = 0.01) as well as transplant related mortality (TRM; adjusted HR, 0.48; 95% CI, 0.27–0.86, P = 0.01). The recipient G/G or A/G genotype was associated with a better OS (adjusted HR, 0.68; 95% CI, 0.47–0.99; P = 0.05) and a trend toward a reduced TRM (adjusted HR, 0.61; 95% CI, 0.35–1.06; P = 0.08). Granzyme B polymorphism did not have any effect on the transplant outcomes in patients with lymphoid malignancies consisting of acute lymphoid leukemia and malignant lymphoma. These data suggest that there is an association between the granzyme B genotype and better clinical outcomes in patients with myeloid malignancies after unrelated BMT
Impact of conditioning intensity in T-replete haplo-identical stem cell transplantation for acute leukemia: a report from the acute leukemia working party of the EBMT
Activation-associated phenotype of CD3+ T cells in acute graft-versus-host disease
During the effector phase of graft-versus-host disease (GvHD) response, donor T cells play an essential role and they are believed to change the expression of activation and co-stimulatory markers associated with functional alloreactivity. We analysed the expression of CD25, CD69, HLA-DR, CD154 and CD134 on CD4+ and CD8+ T cells by flow cytometry during acute GvHD (aGvHD) in 24 patients receiving human leucocyte antigen (HLA)-identical stem cell transplants. Expression of these molecules in nine patients with stages I–IV aGvHD was compared with 15 patients without aGvHD (n = 15). Serial analysis showed that peripheral blood of aGvHD patients presented a significant increase of CD4+ CD25+ cells (P < 0·03), CD4+ CD69+ (P < 0·04) and CD4+ CD134+ cells (P < 0·01). Additionally, there was a significant increase in CD8+ cells expressing CD134 (P = 0·007) and CD154 (P = 0·02). After resolution of aGvHD, the increased expression of these molecules returned to values comparable to patients without aGvHD. Only two of the 15 patients without clinical signs of aGvHD presented activated T cells that could not be attributed to development of aGvHD. In summary, our data show that multiple activation molecules are preferentially up-regulated on CD4+ and CD8+ T cells from patients with aGvHD. These patients had a significant increase in the expression of the co-stimulatory molecules CD134 and CD154
Histopathological bone marrow changes after reduced-intensity hematopoietic stem cell transplantation for follicular lymphoma involving bone marrow
Determination of Similarity Margin in Comparative Clinical Studies to Support the Development of Biosimilar Products of Neupogen® (Filgrastim, Granulocyte Colony-Stimulating Factor [G-CSF])
Graft versus host disease after liver transplantation – a single center experience and review of literature
Targeted Busulfan therapy with a steady-state concentration of 600–700 ng/mL in patients with sickle cell disease receiving HLA-identical sibling bone marrow transplant
- …