53 research outputs found

    Gender differences in local and systemic reactions to inactivated influenza vaccine, established by a meta-analysis of fourteen independent studies

    Get PDF
    In order to determine whether there is a difference between genders in reported adverse reactions to inactivated influenza vaccine, a computerized database of serological studies was investigated. A standardized questionnaire was used to evaluate vaccine reactogenicity. A total of 1,800 vaccinees in 14 studies were analyzed separately for two age groups ( or = 60 years of age). Females reported significantly more local reactions than males. The pooled odds ratio for the outcome measure "any local reaction" was 0.32 (95% confidence interval, 0.26-0.40, significant) and 0.54 (95% Cl, 0.41-0.70, significant) for young and elderly adults, respectively. Similar results were obtained for the outcome measure "any systemic reaction." Previous exposure to influenza or influenza vaccine had no influence on reactogenicity. There were no gender differences in sero-responses. In conclusion, gender should be regarded as a predictor of reported reactions to influenza vaccine in both young and elderly adults and should be addressed in future study designs

    Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics

    Get PDF
    Molybdenum disulfide (MoS2), a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia

    Evaluation of non-inferiority of intradermal versus adjuvanted seasonal influenza vaccine using two serological techniques: a randomised comparative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although seasonal influenza vaccine is effective in the elderly, immune responses to vaccination are lower in the elderly than in younger adults. Strategies to optimise responses to vaccination in the elderly include using an adjuvanted vaccine or using an intradermal vaccination route. The immunogenicity of an intradermal seasonal influenza vaccine was compared with that of an adjuvanted vaccine in the elderly.</p> <p>Methods</p> <p>Elderly volunteers (age ≥ 65 years) were randomised to receive a single dose of trivalent seasonal influenza vaccine: either a split-virion vaccine containing 15 μg haemagglutinin [HA]/strain/0.1-ml dose administered intradermally, or a subunit vaccine (15 μg HA/strain/0.5-ml dose) adjuvanted with MF59C.1 and administered intramuscularly. Blood samples were taken before and 21 ± 3 days post-vaccination. Anti-HA antibody titres were assessed using haemagglutination inhibition (HI) and single radial haemolysis (SRH) methods. We aimed to show that the intradermal vaccine was non-inferior to the adjuvanted vaccine.</p> <p>Results</p> <p>A total of 795 participants were enrolled (intradermal vaccine n = 398; adjuvanted vaccine n = 397). Non-inferiority of the intradermal vaccine was demonstrated for the A/H1N1 and B strains, but not for the A/H3N2 strain (upper bound of the 95% CI = 1.53) using the HI method, and for all three strains by the SRH method. A <it>post-hoc </it>analysis of covariance to adjust for baseline antibody titres demonstrated the non-inferiority of the intradermal vaccine by HI and SRH methods for all three strains. Both vaccines were, in general, well tolerated; the incidence of injection-site reactions was higher for the intradermal (70.1%) than the adjuvanted vaccine (33.8%) but these reactions were mild and of short duration.</p> <p>Conclusions</p> <p>The immunogenicity and safety of the intradermal seasonal influenza vaccine in the elderly was comparable with that of the adjuvanted vaccine. Intradermal vaccination to target the immune properties of the skin appears to be an appropriate strategy to address the challenge of declining immune responses in the elderly.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: NCT00554333.</p

    Adaptation of High-Growth Influenza H5N1 Vaccine Virus in Vero Cells: Implications for Pandemic Preparedness

    Get PDF
    Current egg-based influenza vaccine production technology can't promptly meet the global demand during an influenza pandemic as shown in the 2009 H1N1 pandemic. Moreover, its manufacturing capacity would be vulnerable during pandemics caused by highly pathogenic avian influenza viruses. Therefore, vaccine production using mammalian cell technology is becoming attractive. Current influenza H5N1 vaccine strain (NIBRG-14), a reassortant virus between A/Vietnam/1194/2004 (H5N1) virus and egg-adapted high-growth A/PR/8/1934 virus, could grow efficiently in eggs and MDCK cells but not Vero cells which is the most popular cell line for manufacturing human vaccines. After serial passages and plaque purifications of the NIBRG-14 vaccine virus in Vero cells, one high-growth virus strain (Vero-15) was generated and can grow over 108 TCID50/ml. In conclusion, one high-growth H5N1 vaccine virus was generated in Vero cells, which can be used to manufacture influenza H5N1 vaccines and prepare reassortant vaccine viruses for other influenza A subtypes

    Influenza vaccine dosages

    No full text
    corecore