61 research outputs found

    Fitness Trade-Offs in the Evolution of Dihydrofolate Reductase and Drug Resistance in Plasmodium falciparum

    Get PDF
    Background: Patterns of emerging drug resistance reflect the underlying adaptive landscapes for specific drugs. In Plasmodium falciparum, the parasite that causes the most serious form of malaria, antifolate drugs inhibit the function of essential enzymes in the folate pathway. However, a handful of mutations in the gene coding for one such enzyme, dihydrofolate reductase, confer drug resistance. Understanding how evolution proceeds from drug susceptibility to drug resistance is critical if new antifolate treatments are to have sustained usefulness. Methodology/Principal Findings: We use a transgenic yeast expression system to build on previous studies that described the adaptive landscape for the antifolate drug pyrimethamine, and we describe the most likely evolutionary trajectories for the evolution of drug resistance to the antifolate chlorcycloguanil. We find that the adaptive landscape for chlorcycloguanil is multi-peaked, not all highly resistant alleles are equally accessible by evolution, and there are both commonalities and differences in adaptive landscapes for chlorcycloguanil and pyrimethamine. Conclusions/Significance: Our findings suggest that cross-resistance between drugs targeting the same enzyme reflect the fitness landscapes associated with each particular drug and the position of the genotype on both landscapes. The possibl

    Drug coverage in treatment of malaria and the consequences for resistance evolution - evidence from the use of sulphadoxine/pyrimethamine

    Get PDF
    BACKGROUND\ud \ud It is argued that, the efficacy of anti-malarials could be prolonged through policy-mediated reductions in drug pressure, but gathering evidence of the relationship between policy, treatment practice, drug pressure and the evolution of resistance in the field is challenging. Mathematical models indicate that drug coverage is the primary determinant of drug pressure and the driving force behind the evolution of drug resistance. These models show that where the basis of resistance is multigenic, the effects of selection can be moderated by high recombination rates, which disrupt the associations between co-selected resistance genes.\ud \ud METHODS\ud \ud To test these predictions, dhfr and dhps frequency changes were measured during 2000-2001 while SP was the second-line treatment and contrasted these with changes during 2001-2002 when SP was used for first-line therapy. Annual cross sectional community surveys carried out before, during and after the policy switch in 2001 were used to collect samples. Genetic analysis of SP resistance genes was carried out on 4,950 Plasmodium falciparum infections and the selection pressure under the two policies compared.\ud \ud RESULTS\ud \ud The influence of policy on the parasite reservoir was profound. The frequency of dhfr and dhps resistance alleles did not change significantly while SP was the recommended second-line treatment, but highly significant changes occurred during the subsequent year after the switch to first line SP. The frequency of the triple mutant dhfr (N51I,C59R,S108N) allele (conferring pyrimethamine resistance) increased by 37% - 63% and the frequency of the double A437G, K540E mutant dhps allele (conferring sulphadoxine resistance) increased 200%-300%. A strong association between these unlinked alleles also emerged, confirming that they are co-selected by SP.\ud \ud CONCLUSION\ud \ud The national policy change brought about a shift in treatment practice and the resulting increase in coverage had a substantial impact on drug pressure. The selection applied by first-line use is strong enough to overcome recombination pressure and create significant linkage disequilibrium between the unlinked genetic determinants of pyrimethamine and sulphadoxine resistance, showing that recombination is no barrier to the emergence of resistance to combination treatments when they are used as the first-line malaria therapy

    Assessment of the therapeutic efficacy of a paediatric formulation of artemether-lumefantrine (Coartesiane(®)) for the treatment of uncomplicated Plasmodium falciparum in children in Zambia

    Get PDF
    BACKGROUND: Sentinel site surveillance of antimalarials by in-vivo therapeutic efficacy studies in Zambia is one of the key activities ear-marked for monitoring and evaluation. The studies are conducted annually in order to provide timely and reliable information on the status of the recommended regimens for malaria case management. The findings of the therapeutic efficacy of an artemisinin-based combination therapy of pediatric artemether-lumefantrine (Coartesiane(®)) are reported. METHOD: The design is a simple, one-arm, prospective evaluation of the clinical and parasitological response to directly observed treatment for uncomplicated malaria. The study was conducted in sentinel sites using the WHO standardized protocol for the assessment of therapeutic efficacy of antimalarial drugs (WHO 2000) in children under five years of age, weighing less than 10 Kg. The study was conducted at two clinics, one in Chongwe (Lusaka Province) and Chipata (Eastern Province). The 28-day follow-up period was used coupled with PCR genotyping for MSP1 and MSP2 in order to differentiate recrudescence from re-infections for parasites that appeared after Day 14. RESULTS: 91/111 children enrolled in the study, were successfully followed up. Artemether-lumefantrine (Coartesiane(®)) was found to produce significant gametocyte reduction. The Adequate Clinical and Parasitological Response (ACPR) was found to be 100% (95% CI 96.0;100). CONCLUSION: Coartesiane(® )was effective in treating uncomplicated malaria in Zambian children weighing less than 10 kg, an age group normally excluded from taking the tablet formulation of artemether-lumefantrine (Coartem(®))

    Potential impact of host immunity on malaria treatment outcome in Tanzanian children infected with Plasmodium falciparum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In malaria endemic areas children may recover from malaria after chemotherapy in spite of harbouring genotypically drug-resistant <it>Plasmodium falciparum</it>. This phenomenon suggests that there is a synergy between drug treatment and acquired immunity. This hypothesis was examined in an area of moderately intense transmission of <it>P. falciparum </it>in Tanzania during a drug trail with sulphadoxine-pyrimethamine (SP) or amodiaquine (AQ).</p> <p>Methods</p> <p>One hundred children with uncomplicated malaria were treated with either SP or AQ and followed for 28 days. Mutations in parasite genes related to SP and AQ-resistance as well as human sickle cell trait and alpha-thalassaemia were determined using PCR and sequence-specific oligonucleotide probes and enzyme-linked immunosorbent assay (SSOP-ELISA), and IgG antibody responses to a panel of <it>P. falciparum </it>antigens were assessed and related to treatment outcome.</p> <p>Results</p> <p>Parasitological or clinical treatment failure (TF) was observed in 68% and 38% of children receiving SP or AQ, respectively. In those with adequate clinical and parasitological response (ACPR) compared to children with TF, and for both treatment regimens, prevalence and levels of anti-Glutamate-rich Protein (GLURP)-specific IgG antibodies were significantly higher (P < 0.001), while prevalence of parasite haplotypes associated with SP and AQ resistance was lower (P = 0.02 and P = 0.07, respectively). Interestingly, anti-GLURP-IgG antibodies were more strongly associated with treatment outcome than parasite resistant haplotypes, while the IgG responses to none of the other 11 malaria antigens were not significantly associated with ACPR.</p> <p>Conclusion</p> <p>These findings suggest that GLURP-specific IgG antibodies in this setting contribute to clearance of drug-resistant infections and support the hypothesis that acquired immunity enhances the clinical efficacy of drug therapy. The results should be confirmed in larger scale with greater sample size and with variation in transmission intensity.</p

    Plasmodium vivax dhfr and dhps mutations in isolates from Madagascar and therapeutic response to sulphadoxine-pyrimethamine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Four of five <it>Plasmodium </it>species infecting humans are present in Madagascar. <it>Plasmodium vivax </it>remains the second most prevalent species, but is understudied. No data is available on its susceptibility to sulphadoxine-pyrimethamine, the drug recommended for intermittent preventive treatment during pregnancy. In this study, the prevalence of <it>P. vivax </it>infection and the polymorphisms in the <it>pvdhfr </it>and <it>pvdhps </it>genes were investigated. The correlation between these polymorphisms and clinical and parasitological responses was also investigated in <it>P. vivax</it>-infected patients.</p> <p>Methods</p> <p><it>Plasmodium vivax </it>clinical isolates were collected in eight sentinel sites from the four major epidemiological areas for malaria across Madagascar in 2006/2007. <it>Pvdhfr </it>and <it>pvdhps </it>genes were sequenced for polymorphism analysis. The therapeutic efficacy of SP in <it>P. vivax </it>infections was assessed in Tsiroanomandidy, in the foothill of the central highlands. An intention-to-treat analysis of treatment outcome was carried out.</p> <p>Results</p> <p>A total of 159 <it>P. vivax </it>samples were sequenced in the <it>pvdhfr/pvdhps </it>genes. Mutant-types in <it>pvdhfr </it>gene were found in 71% of samples, and in <it>pvdhps </it>gene in 16% of samples. Six non-synonymous mutations were identified in <it>pvdhfr</it>, including two novel mutations at codons 21 and 130. For <it>pvdhps</it>, beside the known mutation at codon 383, a new one was found at codon 422. For the two genes, different combinations were ranged from wild-type to quadruple mutant-type. Among the 16 patients enrolled in the sulphadoxine-pyrimethamine clinical trial (28 days of follow-up) and after adjustment by genotyping, 3 (19%, 95% CI: 5%–43%) of them were classified as treatment failure and were <it>pvdhfr </it>58R/117N double mutant carriers with or without the <it>pvdhps </it>383G mutation.</p> <p>Conclusion</p> <p>This study highlights (i) that genotyping in the <it>pvdhfr </it>and <it>pvdhps </it>genes remains a useful tool to monitor the emergence and the spread of <it>P. vivax </it>sulphadoxine-pyrimethamine resistant in order to improve the national antimalarial drug policy, (ii) the issue of using sulphadoxine-pyrimethamine as a monotherapy for intermittent preventive treatment of pregnant women or children.</p

    The evolution of pyrimethamine resistant dhfr in Plasmodium falciparum of south-eastern Tanzania: comparing selection under SP alone vs SP+artesunate combination

    Get PDF
    BACKGROUND\ud \ud Sulphadoxine-pyrimethamine (SP) resistance is now widespread throughout east and southern Africa and artemisinin compounds in combination with synthetic drugs (ACT) are recommended as replacement treatments by the World Health Organization (WHO). As well as high cure rates, ACT has been shown to slow the development of resistance to the partner drug in areas of low to moderate transmission. This study looked for evidence of protection of the partner drug in a high transmission African context. The evaluation was part of large combination therapy pilot implementation programme in Tanzania, the Interdisciplinary Monitoring Programme for Antimalarial Combination Therapy (IMPACT-TZ) METHODS: The growth of resistant dhfr in a parasite population where SP Monotherapy was the first-line treatment was measured for four years (2002-2006), and compared with the development of resistant dhfr in a neighbouring population where SP + artesunate (SP+AS) was used as the first-line treatment during the same interval. The effect of the differing treatment regimes on the emergence of resistance was addressed in three ways. First, by looking at the rate of increase in frequency of pre-existing mutant dhfr alleles under monotherapy and combination therapy. Second, by examining whether de-novo mutant alleles emerged under either treatment. Finally, by measuring diversity at three dhfr flanking microsatellite loci upstream of the dhfr gene.\ud \ud RESULTS\ud \ud The reduction in SP selection pressure resulting from the adoption of ACT slowed the rate of increase in the frequency of the triple mutant resistant dhfr allele. Comparing between the two populations, the higher levels of genetic diversity in sequence flanking the dhfr triple mutant allele in the population where the ACT regimen had been used indicates the reduction in SP selection pressure arising from combination therapy.\ud \ud CONCLUSION\ud \ud The study demonstrated that, alleles containing two mutations at the dhfr have arisen at least four times independently while those containing triple mutant dhfr arose only once, and were found carrying a single unique Asian-type flanking sequence, which apparently drives the spread of pyrimethamine resistance associated dhfr alleles in east Africa. SP+AS is not recommended for use in areas where SP cure rates are less than 80% but this study reports an observed principle of combination protection from an area where pyrimethamine resistance was already high

    Effect of trimethoprim-sulphamethoxazole on the risk of malaria in HIV-infected Ugandan children living in an area of widespread antifolate resistance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Daily trimethoprim-sulfamethoxazole (TS) protects against malaria, but efficacy may be diminished as anti-folate resistance increases. This study assessed the incidence of falciparum malaria and the prevalence of resistance-conferring <it>Plasmodium falciparum </it>mutations in HIV-infected children receiving daily TS and HIV-uninfected children not taking TS.</p> <p>Materials and methods</p> <p>Subjects were 292 HIV-infected and 517 uninfected children from two cohort studies in Kampala, Uganda observed from August 2006 to December 2008. Daily TS was given to HIV-infected, but not HIV-uninfected children and all participants were provided an insecticide-treated bed net. Standardized protocols were used to measure the incidence of malaria and identify markers of antifolate resistance.</p> <p>Results</p> <p>Sixty-five episodes of falciparum malaria occurred in HIV-infected and 491 episodes in uninfected children during the observation period. TS was associated with a protective efficacy of 80% (0.10 vs. 0.45 episodes per person year, p < 0.001), and efficacy did not vary over three consecutive 9.5 month periods (81%, 74%, 80% respectively, p = 0.506). The prevalences of <it>dhfr </it>51I, 108N, and 59R and <it>dhps </it>437G and 540E mutations were each over 90% among parasites infecting both HIV-infected and uninfected children. Prevalence of the <it>dhfr </it>164L mutation, which is associated with high-level resistance, was significantly higher in parasites from HIV-infected compared to uninfected children (8% vs. 1%, p = 0.001). Sequencing of the <it>dhfr </it>and <it>dhps </it>genes identified only one additional polymorphism, <it>dhps </it>581G, in 2 of 30 samples from HIV-infected and 0 of 54 samples from uninfected children.</p> <p>Conclusion</p> <p>Despite high prevalence of known anti-folate resistance-mediating mutations, TS prophylaxis was highly effective against malaria, but was associated with presence of <it>dhfr </it>164L mutation.</p

    Discovery: an interactive resource for the rational selection and comparison of putative drug target proteins in malaria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Up to half a billion human clinical cases of malaria are reported each year, resulting in about 2.7 million deaths, most of which occur in sub-Saharan Africa. Due to the over-and misuse of anti-malarials, widespread resistance to all the known drugs is increasing at an alarming rate. Rational methods to select new drug target proteins and lead compounds are urgently needed. The Discovery system provides data mining functionality on extensive annotations of five malaria species together with the human and mosquito hosts, enabling the selection of new targets based on multiple protein and ligand properties.</p> <p>Methods</p> <p>A web-based system was developed where researchers are able to mine information on malaria proteins and predicted ligands, as well as perform comparisons to the human and mosquito host characteristics. Protein features used include: domains, motifs, EC numbers, GO terms, orthologs, protein-protein interactions, protein-ligand interactions and host-pathogen interactions among others. Searching by chemical structure is also available.</p> <p>Results</p> <p>An <it>in silico</it> system for the selection of putative drug targets and lead compounds is presented, together with an example study on the bifunctional DHFR-TS from <it>Plasmodium falciparum</it>.</p> <p>Conclusion</p> <p>The Discovery system allows for the identification of putative drug targets and lead compounds in Plasmodium species based on the filtering of protein and chemical properties.</p

    Molecular epidemiology of drug-resistant malaria in western Kenya highlands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since the late 1980s a series of malaria epidemics has occurred in western Kenya highlands. Among the possible factors that may contribute to the highland malaria epidemics, parasite resistance to antimalarials has not been well investigated.</p> <p>Methods</p> <p>Using parasites from highland and lowland areas of western Kenya, we examined key mutations associated with <it>Plasmodium falciparum </it>resistance to sulfadoxine – pyrimethamine and chloroquine, including dihydrofolate reductase (<it>pfdhfr</it>) and dihydropteroate synthetase (<it>pfdhps</it>), chloroquine resistance transporter gene (<it>pfcrt</it>), and multi-drug resistance gene 1 (<it>pfmdr1</it>).</p> <p>Results</p> <p>We found that >70% of samples harbored 76T <it>pfcrt </it>mutations and over 80% of samples harbored quintuple mutations (51I/59R/108N <it>pfdhfr </it>and 437G/540E <it>pfdhps</it>) in both highland and lowland samples. Further, we did not detect significant difference in the frequencies of these mutations between symptomatic and asymptomatic malaria volunteers, and between highland and lowland samples.</p> <p>Conclusion</p> <p>These findings suggest that drug resistance of malaria parasites in the highlands could be contributed by the mutations and their high frequencies as found in the lowland. The results are discussed in terms of the role of drug resistance as a driving force for malaria outbreaks in the highlands.</p

    Effects of Point Mutations in Plasmodium falciparum Dihydrofolate Reductase and Dihydropterate Synthase Genes on Clinical Outcomes and In Vitro Susceptibility to Sulfadoxine and Pyrimethamine

    Get PDF
    Sulfadoxine-pyrimethamine was a common first line drug therapy to treat uncomplicated falciparum malaria, but increasing therapeutic failures associated with the development of significant levels of resistance worldwide has prompted change to alternative treatment regimes in many national malaria control programs. METHODOLOGY AND FINDING: We conducted an in vivo therapeutic efficacy trial of sulfadoxine-pyrimethamine at two locations in the Peruvian Amazon enrolling 99 patients of which, 86 patients completed the protocol specified 28 day follow up. Our objective was to correlate the presence of polymorphisms in P. falciparum dihydrofolate reductase and dihydropteroate synthase to in vitro parasite susceptibility to sulfadoxine and pyrimethamine and to in vivo treatment outcomes. Inhibitory concentration 50 values of isolates increased with numbers of mutations (single [108N], sextuplet [BR/51I/108N/164L and 437G/581G]) and septuplet (BR/51I/108N/164L and 437G/540E/581G) with geometric means of 76 nM (35-166 nM), 582 nM (49-6890- nM) and 4909 (3575-6741 nM) nM for sulfadoxine and 33 nM (22-51 nM), 81 nM (19-345 nM), and 215 nM (176-262 nM) for pyrimethamine. A single mutation present in the isolate obtained at the time of enrollment from either dihydrofolate reductase (164L) or dihydropteroate synthase (540E) predicted treatment failure as well as any other single gene alone or in combination. Patients with the dihydrofolate reductase 164L mutation were 3.6 times as likely to be treatment failures [failures 85.4% (164L) vs 23.7% (I164); relative risk = 3.61; 95% CI: 2.14 - 6.64] while patients with the dihydropteroate synthase 540E were 2.6 times as likely to fail treatment (96.7% (540E) vs 37.5% (K540); relative risk = 2.58; 95% CI: 1.88 - 3.73). Patients with both dihydrofolate reductase 164L and dihydropteroate synthase 540E mutations were 4.1 times as likely to be treatment failures [96.7% vs 23.7%; RR = 4.08; 95% CI: 2.45 - 7.46] compared to patients having both wild forms (I164 and K540).In this part of the Amazon basin, it may be possible to predict treatment failure with sulfadoxine-pyrimethamine equally well by determination of either of the single mutations dihydrofolate reductase 164L or dihydropteroate synthase 540E.ClinicalTrials.gov NCT00951106
    corecore