12 research outputs found

    Sustained high-level expression of human factor IX (hFIX) after liver-targeted delivery of recombinant adeno-associated virus encoding the hFIX gene in rhesus macaques

    Get PDF
    The feasibility, safety, and efficacy of liver-directed gene transfer was evaluated in 5 male macaques (aged 2.5 to 6.5 years) by using a recombinant adeno-associated viral (rAAV) vector (rAAV-2 CAGG-hFIX) that had previously mediated persistent therapeutic expression of human factor IX (hFIX; 6%-10% of physiologic levels) in murine models. A dose of 4 × 1012 vector genomes (vgs)/kg of body weight was administered through the hepatic artery or portal vein. Persistence of the rAAV vgs as circular monomers and dimers and high-molecular-weight concatamers was documented in liver tissue by Southern blot analysis for periods of up to 1 year. Vector particles were present in plasma, urine, or saliva for several days after infusion (as shown by polymerase chain reaction analysis), and the vgs were detected in spleen tissue at low copy numbers. An enzyme-linked immunosorption assay capable of detecting between 1% and 25% of normal levels of hFIX in rhesus plasma was developed by using hyperimmune serum from a rhesus monkey that had received an adenoviral vector encoding hFIX. Two macaques having 3 and 40 rAAV genome equivalents/cell, respectively, in liver tissue had 4% and 8% of normal physiologic plasma levels of hFIX, respectively. A level of hFIX that was 3% of normal levels was transiently detected in one other macaque, which had a genome copy number of 25 before abrogation by a neutralizing antibody (inhibitor) to hFIX. This nonhuman-primate model will be useful in further evaluation and development of rAAV vectors for gene therapy of hemophilia B. © 2002 by The American Society of Hematology

    Assessment of water quality using multivariate analysis�a case study on the Brahmaputra River, Assam, India

    No full text
    Chemical composition of river water is vital to assessment of water quality for irrigation, agriculture and domestic usage. Chemical attributes of riverine water primarily governed by natural weathering of rocks have become overshadowed by increasing range of anthropogenic activities. Progressive pollution of the river waters are critical as rivers in floodplain zones recharge ground water; a vital source of drinking water in India. The degree of impact of the anthropogenic activities within the surface waters of the developing countries has expanded significantly amid the past decades. Hence identification and quantification of natural as well as anthropogenic impact and understanding the source of contaminant is fundamental. In addition continuous monitoring of river water quality is required in order to maintain freshwater assets. The Brahmaputra River is the lifeline of Assam. People residing along its bank directly or indirectly are heavily dependent on the river for their livelihood. Majority of the population in the region is dependent on an agricultural economy. In the present study different multivariate statistical techniques such as cluster analysis (CA), principal component analysis (PCA) and factor analysis (FA) were applied for evaluation of spatial and temporal variations of water quality of the Brahmaputra River for two years (2011�2014) by monitoring nine sampling sites from upstream to downstream along the Assam stretch. The present study highlights the usefulness and need of multivariate statistical assessment of the database in identification of main process that influence the water quality of the river and probable source of contamination.by Pallavi Das and Manish Kuma
    corecore