84 research outputs found

    Early severe inflammatory responses to uropathogenic E. coli predispose to chronic and recurrent urinary tract infection

    Get PDF
    Chronic infections are an increasing problem due to the aging population and the increase in antibiotic resistant organisms. Therefore, understanding the host-pathogen interactions that result in chronic infection is of great importance. Here, we investigate the molecular basis of chronic bacterial cystitis. We establish that introduction of uropathogenic E. coli (UPEC) into the bladders of C3H mice results in two distinct disease outcomes: resolution of acute infection or development of chronic cystitis lasting months. The incidence of chronic cystitis is both host strain and infectious dose-dependent. Further, development of chronic cystitis is preceded by biomarkers of local and systemic acute inflammation at 24 hours post-infection, including severe pyuria and bladder inflammation with mucosal injury, and a distinct serum cytokine signature consisting of elevated IL-5, IL-6, G-CSF, and the IL-8 analog KC. Mice deficient in TLR4 signaling or lymphocytes lack these innate responses and are resistant, to varying degrees, to developing chronic cystitis. Treatment of C3H mice with the glucocorticoid anti-inflammatory drug dexamethasone prior to UPEC infection also suppresses the development of chronic cystitis. Finally, individuals with a history of chronic cystitis, lasting at least 14 days, are significantly more susceptible to redeveloping severe, chronic cystitis upon bacterial challenge. Thus, we have discovered that the development of chronic cystitis in C3H mice by UPEC is facilitated by severe acute inflammatory responses early in infection, which subsequently are predisposing to recurrent cystitis, an insidious problem in women. Overall, these results have significant implications for our understanding of how early host-pathogen interactions at the mucosal surface determines the fate of disease

    Renal involvement in autoimmune connective tissue diseases

    Full text link

    Cerebral ischemic damage in diabetes: an inflammatory perspective

    Get PDF

    Strain design as multiobjective network interdiction problem: A preliminary approach

    No full text
    Computer-aided techniques have been widely applied to analyse the biological circuits of microorganisms and facilitate rational modification of metabolic networks for strain design in order to maximise the production of desired biochemicals for metabolic engineering. Most existing computational methods for strain design formulate the network redesign as a bilevel optimisation problem. While such methods have shown great promise for strain design, this paper employs the idea of network interdiction to fulfil the task. Strain design as a Multiobjective Network Interdiction Problem (MO-NIP) is proposed for which two objectives are optimised (biomass and bioengineering product) simultaneously in addition to the minimisation of the costs of genetic perturbations (design costs). An initial approach to solve the MO-NIP consists on a Nondominated Sorting Genetic Algorithm (NSGA-II). The shown examples demonstrate the usefulness of the proposed formulation for the MO-NIP and the feasibility of the NSGA-II as a problem solver. © Springer Nature Switzerland AG 2018

    NOD1 and NOD2 Interact with the Phagosome Cargo in Mast Cells: A Detailed Morphological Evidence

    No full text
    Mast cells (MC) play a key role in triggering the inflammatory process and share some functions with professional phagocytes. It is not clear whether or not the phagocytic process in MC follows the same route and has the same meaning of that of professional phagocytes. Herein we analyze in detail the structure of the phagosome in rat peritoneal mast cells (RPMC). The ultrastructural analysis of the phagosome, containing either model particles or bacteria, reveals that these vacuoles are very tight, and in several areas, their membrane seems to have dissolved. RPMC express NOD1 and NOD2 proteins whose role is to recognize intracellular foreign components and induce the production of pro-inflammatory mediators. Following Escherichia coli ingestion, both these molecules are found on the phagosome membrane and on ingested pathogens, together with phagosome maturation markers. These findings suggest that in RPMC the ingested cargo can, through interruptions of the phagosome membrane, interact directly with NODs, which act as switches in the process of cytokine production
    corecore