59 research outputs found

    FoxQ1 Overexpression Influences Poor Prognosis in Non-Small Cell Lung Cancer, Associates with the Phenomenon of EMT

    Get PDF
    BACKGROUND: We determined the expression of forkhead box Q1 (FoxQ1), E-cadherin (E-cad), Mucin 1 (MUC1), vimentin (VIM) and S100 calcium binding protein A4 (S100A4), all epithelial-mesenchymal transition (EMT) indicator proteins in non-small cell lung cancer (NSCLC) tissue samples. We also investigated the relationship between these five proteins expression and other clinicopathologic factors in NSCLC. Finally, we assessed the potential value of these markers as prognostic indicators of survival in NSCLC's patients. METHODS: Quantitative real-time PCR and immunohistochemistry were used to characterize the expression of the FoxQ1 mRNA and protein in NSCLC. Expression of transcripts and translated products for the other four EMT indicator proteins was assessed by immunohistochemistry in the same clinical NSCLC samples. RESULTS: FoxQ1 mRNA and protein were up-regulated in NSCLC compared with normal tissues (P = 0.015 and P<0.001, respectively). Expression of FoxQ1 in adenocarcinoma was higher than in squamous cell carcinoma (P = 0.005), and high expression of FoxQ1 correlated with loss of E-cad expression (P = 0.012), and anomalous positivity of VIM (P = 0.024) and S100A4 (P = 0.004). Additional survival analysis showed that high expression of FoxQ1 (P = 0.047) and E-cad (P = 0.021) were independent prognostic factors. CONCLUSION: FoxQ1 maybe plays a specific role in the EMT of NSCLC, and could be used as a prognostic factor for NSCLC

    Fluorescence-based high-throughput functional profiling of ligand-gated ion channels at the level of single cells

    Get PDF
    Ion channels are involved in many physiological processes and are attractive targets for therapeutic intervention. Their functional properties vary according to their subunit composition, which in turn varies in a developmental and tissue-specific manner and as a consequence of pathophysiological events. Understanding this diversity requires functional analysis of ion channel properties in large numbers of individual cells. Functional characterisation of ligand-gated channels involves quantitating agonist and drug dose-response relationships using electrophysiological or fluorescence-based techniques. Electrophysiology is limited by low throughput and high-throughput fluorescence-based functional evaluation generally does not enable the characterization of the functional properties of each individual cell. Here we describe a fluorescence-based assay that characterizes functional channel properties at single cell resolution in high throughput mode. It is based on progressive receptor activation and iterative fluorescence imaging and delivers >100 dose-responses in a single well of a 384-well plate, using α1-3 homomeric and αβ heteromeric glycine receptor (GlyR) chloride channels as a model system. We applied this assay with transiently transfected HEK293 cells co-expressing halide-sensitive yellow fluorescent protein and different GlyR subunit combinations. Glycine EC values of different GlyR isoforms were highly correlated with published electrophysiological data and confirm previously reported pharmacological profiles for the GlyR inhibitors, picrotoxin, strychnine and lindane. We show that inter and intra well variability is low and that clustering of functional phenotypes permits identification of drugs with subunit-specific pharmacological profiles. As this method dramatically improves the efficiency with which ion channel populations can be characterized in the context of cellular heterogeneity, it should facilitate systems-level analysis of ion channel properties in health and disease and the discovery of therapeutics to reverse pathological alterations

    Evidence That a Lipolytic Enzyme—Hematopoietic-Specific Phospholipase C-β2—Promotes Mobilization of Hematopoietic Stem Cells by Decreasing Their Lipid Raft-Mediated Bone Marrow Retention and Increasing the Promobilizing Effects of Granulocytes

    Get PDF
    Hematopoietic stem/progenitor cells (HSPCs) reside in the bone marrow (BM) microenvironment and are retained there by the interaction of membrane lipid raft-associated receptors, such as the α-chemokine receptor CXCR4 and the α4β1-integrin (VLA-4, very late antigen 4 receptor) receptor, with their respective specific ligands, stromal-derived factor 1 and vascular cell adhesion molecule 1, expressed in BM stem cell niches. The integrity of the lipid rafts containing these receptors is maintained by the glycolipid glycosylphosphatidylinositol anchor (GPI-A). It has been reported that a cleavage fragment of the fifth component of the activated complement cascade, C5a, has an important role in mobilizing HSPCs into the peripheral blood (PB) by (i) inducing degranulation of BM-residing granulocytes and (ii) promoting their egress from the BM into the PB so that they permeabilize the endothelial barrier for subsequent egress of HSPCs. We report here that hematopoietic cell-specific phospholipase C-β2 (PLC-β2) has a crucial role in pharmacological mobilization of HSPCs. On the one hand, when released during degranulation of granulocytes, it digests GPI-A, thereby disrupting membrane lipid rafts and impairing retention of HSPCs in BM niches. On the other hand, it is an intracellular enzyme required for degranulation of granulocytes and their egress from BM. In support of this dual role, we demonstrate that PLC-β2-knockout mice are poor mobilizers and provide, for the first time, evidence for the involvement of this lipolytic enzyme in the mobilization of HSPCs

    Gene therapy for monogenic liver diseases: clinical successes, current challenges and future prospects

    Get PDF
    Over the last decade, pioneering liver-directed gene therapy trials for haemophilia B have achieved sustained clinical improvement after a single systemic injection of adeno-associated virus (AAV) derived vectors encoding the human factor IX cDNA. These trials demonstrate the potential of AAV technology to provide long-lasting clinical benefit in the treatment of monogenic liver disorders. Indeed, with more than ten ongoing or planned clinical trials for haemophilia A and B and dozens of trials planned for other inherited genetic/metabolic liver diseases, clinical translation is expanding rapidly. Gene therapy is likely to become an option for routine care of a subset of severe inherited genetic/metabolic liver diseases in the relatively near term. In this review, we aim to summarise the milestones in the development of gene therapy, present the different vector tools and their clinical applications for liver-directed gene therapy. AAV-derived vectors are emerging as the leading candidates for clinical translation of gene delivery to the liver. Therefore, we focus on clinical applications of AAV vectors in providing the most recent update on clinical outcomes of completed and ongoing gene therapy trials and comment on the current challenges that the field is facing for large-scale clinical translation. There is clearly an urgent need for more efficient therapies in many severe monogenic liver disorders, which will require careful risk-benefit analysis for each indication, especially in paediatrics

    Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: a worldwide collaborative project.

    Get PDF

    Estimated Deaths Attributable to Social Factors in the United States

    No full text
    Objectives. We estimated the number of deaths attributable to social factors in the United States. Methods. We conducted a MEDLINE search for all English-language articles published between 1980 and 2007 with estimates of the relation between social factors and adult all-cause mortality. We calculated summary relative risk estimates of mortality, and we obtained and used prevalence estimates for each social factor to calculate the population-attributable fraction for each factor. We then calculated the number of deaths attributable to each social factor in the United States in 2000. Results. Approximately 245000 deaths in the United States in 2000 were attributable to low education, 176000 to racial segregation, 162000 to low social support, 133000 to individual-level poverty, 119000 to income inequality, and 39000 to area-level poverty. Conclusions. The estimated number of deaths attributable to social factors in the United States is comparable to the number attributed to pathophysiological and behavioral causes. These findings argue for a broader public health conceptualization of the causes of mortality and an expansive policy approach that considers how social factors can be addressed to improve the health of populations. (Am J Public Health. Published online ahead of print June 16, 2011:e1-e10. doi:10.2105/AJPH.2010.300086)
    • …
    corecore