3,623 research outputs found
Gravitational energy of a magnetized Schwarzschild black hole - a teleparallel approach
We investigate the distribution of gravitational energy on the spacetime of a
Schwarzschild black hole immersed in a cosmic magnetic field. This is done in
the context of the {\it Teleparallel Equivalent of General Relativity}, which
is an alternative geometrical formulation of General Relativity, where gravity
is describe by a spacetime endowed with torsion, rather than curvature, with
the fundamental field variables being tetrads. We calculate the energy enclosed
by a two-surface of constant radius - in particular, the energy enclosed by the
event horizon of the black hole. In this case we find that the magnetic field
has the effect of increasing the gravitational energy as compared to the vacuum
Schwarzschild case. We also compute the energy (i) in the weak magnetic field
limit, (ii) in the limit of vanishing magnetic field, and (iii) in the absence
of the black hole. In all cases our results are consistent with what should be
expected on physical grounds.Comment: version to match the one to be published on General Relativity and
Gravitatio
Dopaminergic Differentiation of Human Embryonic Stem Cells on PA6-Derived Adipocytes.
Human embryonic stem cells (hESCs) are a promising source for cell replacement therapies. Parkinson's disease is one of the candidate diseases for the cell replacement therapy since the motor manifestations of the disease are associated with the loss of dopaminergic neurons in the substantia nigra pars compacta. Stromal cell-derived inducing activity (SDIA) is the most commonly used method for the dopaminergic differentiation of hESCs. This chapter describes a simple, reliable, and scalable dopaminergic induction method of hESCs using PA6-derived adipocytes. Coculturing hESCs with PA6-derived adipocytes markedly reduces the variable outcomes among experiments. Moreover, the colony differentiation step of this method can also be used for the dopaminergic induction of mouse embryonic stem cells and NTERA2 cells as well
The Mechanisms of Codon Reassignments in Mitochondrial Genetic Codes
Many cases of non-standard genetic codes are known in mitochondrial genomes.
We carry out analysis of phylogeny and codon usage of organisms for which the
complete mitochondrial genome is available, and we determine the most likely
mechanism for codon reassignment in each case. Reassignment events can be
classified according to the gain-loss framework. The gain represents the
appearance of a new tRNA for the reassigned codon or the change of an existing
tRNA such that it gains the ability to pair with the codon. The loss represents
the deletion of a tRNA or the change in a tRNA so that it no longer translates
the codon. One possible mechanism is Codon Disappearance, where the codon
disappears from the genome prior to the gain and loss events. In the
alternative mechanisms the codon does not disappear. In the Unassigned Codon
mechanism, the loss occurs first, whereas in the Ambiguous Intermediate
mechanism, the gain occurs first. Codon usage analysis gives clear evidence of
cases where the codon disappeared at the point of the reassignment and also
cases where it did not disappear. Codon disappearance is the probable
explanation for stop to sense reassignments and a small number of reassignments
of sense codons. However, the majority of sense to sense reassignments cannot
be explained by codon disappearance. In the latter cases, by analysis of the
presence or absence of tRNAs in the genome and of the changes in tRNA
sequences, it is sometimes possible to distinguish between the Unassigned Codon
and Ambiguous Intermediate mechanisms. We emphasize that not all reassignments
follow the same scenario and that it is necessary to consider the details of
each case carefully.Comment: 53 pages (45 pages, including 4 figures + 8 pages of supplementary
information). To appear in J.Mol.Evo
Congenital cystic eye with multiple dermal appendages: a case report
BACKGROUND: A partial or complete failure in the involution of the primary optic vesicle resulting in the formation of a cyst is an extremely rare anomaly known as congenital cystic eye. The primary optic vesicle is formed but instead of the anterior part of the vesicle involuting to lie in apposition with the posterior part, a cyst persists at birth and replaces the eye. CASE PRESENTATION: We report a case of congenital cystic eye associated with multiple dermal appendages in a 1-day-old female child. This condition presented at birth as a large orbital mass in the left orbit that bulged forwards and stretched the eyelids. No globe or any other ocular structures were identified in the orbit. Multiple dermal appendages were present in the adjacent part of the face below the left orbit and on the upper part of the neck. CONCLUSIONS: Congenital cystic eye is an extremely rare condition and with only 28 previous cases reported in the literature. We present the second case of congenital cystic eye with multiple dermal appendages of the face and neck
Entanglement in a Solid State Spin Ensemble
Entanglement is the quintessential quantum phenomenon and a necessary
ingredient in most emerging quantum technologies, including quantum repeaters,
quantum information processing (QIP) and the strongest forms of quantum
cryptography. Spin ensembles, such as those in liquid state nuclear magnetic
resonance, have been powerful in the development of quantum control methods,
however, these demonstrations contained no entanglement and ultimately
constitute classical simulations of quantum algorithms. Here we report the
on-demand generation of entanglement between an ensemble of electron and
nuclear spins in isotopically engineered phosphorus-doped silicon. We combined
high field/low temperature electron spin resonance (3.4 T, 2.9 K) with
hyperpolarisation of the 31P nuclear spin to obtain an initial state of
sufficient purity to create a non-classical, inseparable state. The state was
verified using density matrix tomography based on geometric phase gates, and
had a fidelity of 98% compared with the ideal state at this field and
temperature. The entanglement operation was performed simultaneously, with high
fidelity, to 10^10 spin pairs, and represents an essential requirement of a
silicon-based quantum information processor.Comment: 4 pages, 3 figures plus supporting information of 4 pages, 1 figure
v2: Updated reference
The effectiveness of early lens extraction with intraocular lens implantation for the treatment of primary angle-closure glaucoma (EAGLE) : study protocol for a randomized controlled trial
Peer reviewedPublisher PD
Study of B -> \rho \pi decays at Belle
This paper describes a study of B meson decays to the pseudoscalar-vector
final state \rho\pi using 31.9\times 10^6 B\bar{B} events collected with the
Belle detector at KEKB. The branching fractions B(B^+ \to \rho^0\pi^+) =
(8.0^{+2.3+0.7}_{-2.0-0.7}) \times 10^{-6} and B(B^0 -> \rho^{+-} \pi^{-+}) =
(20.8^{+6.0+2.8}_{-6.3-3.1}) \times 10^{-6} are obtained. In addition, a 90%
confidence level upper limit of B(B^0 \to \rho^0\pi^0) < 5.3 \times 10^{-6}is
reported.Comment: 14 pages, 3 figures, to be submitted to Phys. Lett.
Silicon-based spin and charge quantum computation
Silicon-based quantum-computer architectures have attracted attention because
of their promise for scalability and their potential for synergetically
utilizing the available resources associated with the existing Si technology
infrastructure. Electronic and nuclear spins of shallow donors (e.g.
phosphorus) in Si are ideal candidates for qubits in such proposals due to the
relatively long spin coherence times. For these spin qubits, donor electron
charge manipulation by external gates is a key ingredient for control and
read-out of single-qubit operations, while shallow donor exchange gates are
frequently invoked to perform two-qubit operations. More recently, charge
qubits based on tunnel coupling in P substitutional molecular ions in Si
have also been proposed. We discuss the feasibility of the building blocks
involved in shallow donor quantum computation in silicon, taking into account
the peculiarities of silicon electronic structure, in particular the six
degenerate states at the conduction band edge. We show that quantum
interference among these states does not significantly affect operations
involving a single donor, but leads to fast oscillations in electron exchange
coupling and on tunnel-coupling strength when the donor pair relative position
is changed on a lattice-parameter scale. These studies illustrate the
considerable potential as well as the tremendous challenges posed by donor spin
and charge as candidates for qubits in silicon.Comment: Review paper (invited) - to appear in Annals of the Brazilian Academy
of Science
Systemic Treatment with CpG-B after Sublethal Rickettsial Infection Induces Mouse Death through Indoleamine 2,3-Dioxygenase (IDO)
Due to its strong immune stimulatory effects through TLR9, CpG-containing oligodeoxynucleotides (CpG ODN) have been tested in multiple clinical trials as vaccine adjuvant for infectious diseases and cancer. However, immune suppression induced by systemic administration of CpGs has been reported recently. In this study, we evaluated the impact of CpGs in an acute rickettsiosis model. We found that systemic treatment with type B CpG (CpG-B), but not type A CpG (CpG-A), at 2 days after sublethal R. australis infection induced mouse death. Although wild-type (WT) B6 and IDO−/− mice showed similar survival rates with three different doses of R. australis infection, treatment with CpG-B after sublethal infection consistently induced higher mortality with greater tissue bacterial loads in WT but not IDO−/− mice. Also, CpG-B treatment promoted the development of higher serum concentrations of proinflammatory cytokines/chemokines through IDO. Furthermore, while T cell-mediated immune responses enhanced by CpG-B were independent of IDO, treatment with CpG-B promoted T cell activation, PD-1 expression and cell apoptosis partially through IDO. A depletion study using anti-mPDCA-1 mAb indicated that plasmacytoid dendritic cells (pDC) were not required for CpG-B-induced death of R. australis-infected mice. Additionally, the results in iNOS−/− mice suggested that nitric oxide (NO) was partially involved in CpG-B-induced death of R. australis-infected mice. Surprisingly, pre-treatment with CpG-B before administration of a lethal dose of R. australis provided effective immunity in WT, IDO−/− and iNOS−/− mice. Taken together, our study provides evidence that CpGs exert complex immunological effects by both IDO-dependent and -independent mechanisms, and that systemic treatment with CpGs before or after infection has a significant and distinct impact on disease outcomes
- …