15 research outputs found

    TGF-β targets the hippo pathway scaffold RASSF1A to facilitate YAP/SMAD2 nuclear translocation

    Full text link
    Epigenetic inactivation of the Hippo pathway scaffold RASSF1A is associated with poor prognosis in a wide range of sporadic human cancers. Loss of expression reduces tumor suppressor activity and promotes genomic instability, but how this pleiotropic biomarker is regulated at the protein level is unknown. Here we show that TGF-β is the physiological signal that stimulates RASSF1A degradation by the ubiquitin-proteasome pathway. In response to TGF-β, RASSF1A is recruited to TGF-β receptor I and targeted for degradation by the co-recruited E3 ubiquitin ligase ITCH. RASSF1A degradation is necessary to permit Hippo pathway effector YAP1 association with SMADs and subsequent nuclear translocation of receptor-activated SMAD2. We find that RASSF1A expression regulates TGF-β-induced YAP1/SMAD2 interaction and leads to SMAD2 cytoplasmic retention and inefficient transcription of TGF-β targets genes. Moreover, RASSF1A limits TGF-β induced invasion, offering a new framework on how RASSF1A affects YAP1 transcriptional output and elicits its tumor-suppressive function

    Alternate splicing of the p53 inhibitor HDMX offers a superior prognostic biomarker than p53 mutation in human cancer.

    Full text link
    Conventional high-grade osteosarcoma is the most common primary bone malignancy. Although altered expression of the p53 inhibitor HDMX (Mdmx/Mdm4) is associated with cancer risk, progression, and outcome in other tumor types, little is known about its role in osteosarcoma. High expression of the Hdmx splice variant HDMX-S relative to the full-length transcript (the HDMX-S/HDMX-FL ratio) correlates with reduced HDMX protein expression, faster progression, and poorer survival in several cancers. Here, we show that the HDMX-S/HDMX-FL ratio positively correlates with less HDMX protein expression, faster metastatic progression, and a trend to worse overall survival in osteosarcomas. We found that the HDMX-S/HDMX-FL ratio associated with common somatic genetic lesions connected with p53 inhibition, such as p53 mutation and HDM2 overexpression in osteosarcoma cell lines. Interestingly, this finding was not limited to osteosarcomas as we observed similar associations in breast cancer and a variety of other cancer cell lines, as well as in tumors from patients with soft tissue sarcoma. The HDMX-S/HDMX-FL ratio better defined patients with sarcoma with worse survival rates than p53 mutational status. We propose a novel role for alternative splicing of HDMX, whereby it serves as a mechanism by which HDMX protein levels are reduced in cancer cells that have already inhibited p53 activity. Alternative splicing of HDMX could, therefore, serve as a more effective biomarker for p53 pathway attenuation in cancers than p53 gene mutation

    RASSF1C oncogene elicits amoeboid invasion, cancer stemness, and extracellular vesicle release via a SRC/Rho axis

    Get PDF
    Cell plasticity is a crucial hallmark leading to cancer metastasis. Upregulation of Rho/ROCK pathway drives actomyosin contractility, protrusive forces, and contributes to the occurrence of highly invasive amoeboid cells in tumors. Cancer stem cells are similarly associated with metastasis, but how these populations arise in tumors is not fully understood. Here, we show that the novel oncogene RASSF1C drives mesenchymal-to-amoeboid transition and stem cell attributes in breast cancer cells. Mechanistically, RASSF1C activates Rho/ROCK via SRC-mediated RhoGDI inhibition, resulting in generation of actomyosin contractility. Moreover, we demonstrate that RASSF1C-induced amoeboid cells display increased expression of cancer stem-like markers such as CD133, ALDH1, and Nanog, and are accompanied by higher invasive potential in vitro and in vivo. Further, RASSF1C-induced amoeboid cells employ extracellular vesicles to transfer the invasive phenotype to target cells and tissue. Importantly, the underlying RASSF1C-driven biological processes concur to explain clinical data: namely, methylation of the RASSF1C promoter correlates with better survival in early-stage breast cancer patients. Therefore, we propose the use of RASSF1 gene promoter methylation status as a biomarker for patient stratification

    Polymorphisms in the p53 pathway are enriched in cancer susceptibility loci and share characteristics with somatic pathway mutations

    Full text link
    Commonly inherited genetic variants, such as single nucleotide polymorphisms (SNPs) hold great promise as easily obtainable and measurable biomarkers. Over one thousand SNPs associate with cancer in genome-wide association studies (GWAS). However, the limited understanding of the biology behind these associations has restricted their utility

    Polymorphisms in the p53 pathway are enriched in cancer susceptibility loci and share characteristics with somatic pathway mutations

    Full text link
    Commonly inherited genetic variants, such as single nucleotide polymorphisms (SNPs) hold great promise as easily obtainable and measurable biomarkers. Over one thousand SNPs associate with cancer in genome-wide association studies (GWAS). However, the limited understanding of the biology behind these associations has restricted their utility

    「就職氷河期」における新規大卒労働市場の実証分析

    Get PDF
    Transition from pluripotency to differentiation is a pivotal yet poorly understood developmental step. Here, we show that the tumour suppressor RASSF1A is a key player driving the early specification of cell fate. RASSF1A acts as a natural barrier to stem cell self-renewal and iPS cell generation, by switching YAP from an integral component in the β-catenin-TCF pluripotency network to a key factor that promotes differentiation. We demonstrate that epigenetic regulation of the Rassf1A promoter maintains stemness by allowing a quaternary association of YAP-TEAD and β-catenin-TCF3 complexes on the Oct4 distal enhancer. However, during differentiation, promoter demethylation allows GATA1-mediated RASSF1A expression which prevents YAP from contributing to the TEAD/β-catenin-TCF3 complex. Simultaneously, we find that RASSF1A promotes a YAP-p73 transcriptional programme that enables differentiation. Together, our findings demonstrate that RASSF1A mediates transcription factor selection of YAP in stem cells, thereby acting as a functional "switch" between pluripotency and initiation of differentiation.Science Foundation IrelandWellcome TrustCRUK A19277MRCPancreatic Cancer UKFederal Agency for Scientific Organization

    RASSF1A uncouples Wnt from Hippo signalling and promotes YAP mediated differentiation via p73.

    Full text link
    Transition from pluripotency to differentiation is a pivotal yet poorly understood developmental step. Here, we show that the tumour suppressor RASSF1A is a key player driving the early specification of cell fate. RASSF1A acts as a natural barrier to stem cell self-renewal and iPS cell generation, by switching YAP from an integral component in the β-catenin-TCF pluripotency network to a key factor that promotes differentiation. We demonstrate that epigenetic regulation of the Rassf1A promoter maintains stemness by allowing a quaternary association of YAP-TEAD and β-catenin-TCF3 complexes on the Oct4 distal enhancer. However, during differentiation, promoter demethylation allows GATA1-mediated RASSF1A expression which prevents YAP from contributing to the TEAD/β-catenin-TCF3 complex. Simultaneously, we find that RASSF1A promotes a YAP-p73 transcriptional programme that enables differentiation. Together, our findings demonstrate that RASSF1A mediates transcription factor selection of YAP in stem cells, thereby acting as a functional "switch" between pluripotency and initiation of differentiation

    RASSF1 tumor suppressor gene in pancreatic ductal adenocarcinoma: correlation of expression, chromosomal status and epigenetic changes

    Full text link
    Background: The Ras Association Domain Family Member 1 (RASSF1) is one of the most frequently reported methylation-inactivated tumor suppressor genes in primary pancreatic ductal adenocarcinomas (PDAC). Limited information is still available about the impact of RASSF1 gene silencing on the expression of its different isoforms in neoplastic cells.Methods: A series of 96 primary PDAC, with known clinico-pathological parameters, was tested for RASSF1 methylation status by methylation-specific PCR, RASSF1 locus copy number alterations by fluorescence in situ hybridization, and Rassf1a protein expression by immunohistochemistry. A further series of 14 xenografted primary PDAC and 8 PDAC-derived cell lines were tested to obtain a detailed methylation mapping of CpG islands A and C of the RASSF1 locus by pyrosequencing and to evaluate the expression of Rassf1 variants by qRT-PCR.Results: Methylation of CpG island A of the RASSF1 gene was observed in 35 % of the tumors and allelic loss of RASSF1 locus was seen in 30 disomic and in 20 polysomic cases (52 %). Rassf1a immunohistochemical expression was downregulated in half of primary PDAC, and this downregulation was neither correlated with methylation of RASSF1 promoter nor with RASSF1 copy number alterations. RASSF1 status did not influence patients’ prognosis. The expression of the seven RASSF1 isoforms in xenografts and cell lines showed that RASSF1A, RASSF1B, and RASSF1C isoforms were present in all xenografts and cell lines, whereas RASSF1D, RASSF1E, and RASSF1F isoforms were variably expressed among samples. RASSF1G was never expressed in either xenografts or cell lines. The variable expression of RASSF1 isoforms in PDAC xenografts and cell lines was not dependent on RASSF1 methylation status of CpG islands A and C.Conclusions: RASSF1 alterations occurring in PDAC mainly consist in variations of expression of the different isoforms. Different genetic mechanisms seem to contribute to RASSF1 deregulation in this setting, but RASSF1 methylation does not seem to substantially affect RASSF1 isoforms expression
    corecore