35 research outputs found

    Reporting quality of randomized trials in the diet and exercise literature for weight loss

    Get PDF
    BACKGROUND: To adequately assess individual studies and synthesize quantitative research on weight loss studies, transparent reporting of data is required. The authors examined the reporting quality of randomized trials in the weight loss literature, focusing exclusively on subject characteristics as they relate to enrollment, allocation, and follow-up. METHODS: An extensive literature review, which included a computerized search of the MEDLINE database, manual searches of bibliographic references, and cross-referencing of 92 review articles was conducted. A checklist, based on CONSORT recommendations, was used to collect information on whether or not authors reported age, gender, co-morbid disease, medication use, race/ethnicity, and postmenopausal status. Also tracked was whether or not initial and final sample size was reported and stratified by gender. RESULTS: Of 604 possible articles, 231 articles met eligibility criteria. Important subject characteristics were not reported as the following breakdown indicates: age (11%), gender (4%), race/ethnicity (86%), co-morbid disease states (34%), and medication use (92%). Additionally, 21% of articles failed to report initial sample size by gender while 69% neglected to report final sample size by gender. CONCLUSION: Inadequate reporting can create difficulties with interpretation and can lead to biased results receiving false credibility. The quality of reporting for weight loss studies needs considerable improvement

    The influence of a pre-exercise sports drink (PRX) on factors related to maximal aerobic performance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pre-exercise sports drinks (PRX) are commonly used as ergogenic aids in athletic competitions requiring aerobic power. However, in most cases, claims regarding their effectiveness have not been substantiated. In addition, the ingredients in PRX products must be deemed acceptable by the athletic governing bodies that regulate their use in training and competition. The purpose of this study was to examine the effects of a modified PRX formulation (known as EM·PACT™) from earlier investigations on factors related to maximal aerobic performance during a graded exercise test. The modification consisted of removing creatine to meet the compliance standards set forth by various athletic organizations that regulate the use of nutritional supplements.</p> <p>Methods</p> <p>Twenty-nine male and female college students varying in levels of aerobic fitness participated in a randomized crossover administration of PRX (containing 14 g/serving of fructose, medium-chain triglycerides, and amino acids mixed with 8 oz. of water) and placebo (PL) 30 minutes prior to performing a treadmill test with approximately one week separation between the trials. VO<sub>2</sub>max, maximal heart rate (HR), time to exhaustion (Time), and percentage estimated non-protein fat substrate utilization (FA) during two <it>a priori </it>submaximal stages of a graded exercise testing were evaluated.</p> <p>Results</p> <p>The VO<sub>2</sub>max mean value of the PRX trial was significantly greater than the PL trial (P < 0.01). The mean value for Time was also observed to be greater for the PRX trial compared to PL (P < 0.05). Additionally, percentage of FA during submaximal stages of the exercise test was greater for PRX trial in comparison to PL (P < 0.01).</p> <p>Conclusions</p> <p>The modified PRX formulation utilized in this investigation supports the findings of the previous investigation and its efficacy for enhancing indices of aerobic performance (specifically VO<sub>2</sub>max, Time, & FA) during graded exercise testing.</p

    Genes and biochemical pathways in human skeletal muscle affecting resting energy expenditure and fuel partitioning

    No full text
    Genes influencing resting energy expenditure (REE) and respiratory quotient (RQ) represent candidate genes for obesity and the metabolic syndrome because of the involvement of these traits in energy balance and substrate oxidation. We aim to explore the molecular basis for individual variation in REE and fuel partitioning as reflected by RQ. We performed microarray studies in human vastus lateralis muscle biopsies from 40 healthy subjects with measured REE and RQ values. We identified 2,392 and 1,115 genes significantly correlated with REE and RQ, respectively. Genes correlated with REE and RQ encompass a broad array of functions, including carbohydrate and lipid metabolism, gene expression, mitochondrial processes, and membrane transport. Microarray pathway analysis revealed that REE was positively correlated with upregulation of G protein-coupled receptor signaling (meet criteria/total genes: 65 of 283) involved in autonomic nervous system functions, including those receptors mediating adrenergic, dopamine, γ-aminobutyric acid (GABA), neuropeptide Y (NPY), and serotonin action (meet criteria/total genes: 46 of 176). Reduced REE was associated with an increase in genes participating in ubiquitin-proteasome-dependent proteolytic pathways (58 of 232). Serine-type peptidase activity (9 of 76) was positively correlated with RQ, while genes involved in the protein phosphatase type 2A complex (4 of 9), mitochondrial function and cellular respiration (38 of 315), and unfolded protein binding (19 of 97) were associated with reduced RQ values and a preference for lipid fuel metabolism. Individual variations in whole body REE and RQ are regulated by differential expressions of specific genes and pathways intrinsic to skeletal muscle
    corecore