123 research outputs found

    Benefits and Harms of Electrical Neuromodulation for Chronic Pelvic Pain: A Systematic Review

    Get PDF
    Context: Patients with chronic pelvic pain (CPP) may have pain refractory to conventional pain management strategies. Neuromodulation could provide relief of pain. / Objective: To evaluate the benefits and harms of neuromodulation for CPP. / Evidence acquisition:: A comprehensive search of EMBASE, PUBMED, and SCOPUS was performed for the entire database to January 2018. Studies were selected, data were extracted, and quality was assessed by two independent reviewers. A meta-analysis was used to combine randomized controlled trials (RCTs); otherwise, a narrative analysis was used. / Evidence synthesis: After screening 1311 abstracts, 36 studies including eight RCTs were identified, enrolling 1099 patients. Studies covered a broad range in terms of phenotypes of CPP and methods of neuromodulation. A meta-analysis was possible for percutaneous tibial nerve stimulation and transcutaneous electrical nerve stimulation, which showed improvement in pain. Only narrative synthesis was possible for other modalities (sacral nerve stimulation, spinal cord stimulation, intravaginal electrical stimulation, and pudendal nerve stimulation) which appeared to reduce pain in patients with CPP. Treatments generally improved quality of life but with variable reporting of adverse events. Many studies showed high risks of bias and confounding. / Conclusions: While electrical neuromodulation may improve symptoms in CPP, further work is needed with high-quality studies to confirm it. / Patient summary: Neuromodulation may be useful in reducing pain and improving quality of life in patients with chronic pelvic pain, but more research is needed

    A novel nonhuman primate model for influenza transmission

    Get PDF
    Studies of influenza transmission are necessary to predict the pandemic potential of emerging influenza viruses. Currently, both ferrets and guinea pigs are used in such studies, but these species are distantly related to humans. Nonhuman primates (NHP) share a close phylogenetic relationship with humans and may provide an enhanced means to model the virological and immunological events in influenza virus transmission. Here, for the first time, it was demonstrated that a human influenza virus isolate can productively infect and be transmitted between common marmosets (Callithrix jacchus), a New World monkey species. We inoculated four marmosets with the 2009 pandemic virus A/California/07/2009 (H1N1pdm) and housed each together with a naïve cage mate. We collected bronchoalveolar lavage and nasal wash samples from all animals at regular intervals for three weeks post-inoculation to track virus replication and sequence evolution. The unadapted 2009 H1N1pdm virus replicated to high titers in all four index animals by 1 day post-infection. Infected animals seroconverted and presented human-like symptoms including sneezing, nasal discharge, labored breathing, and lung damage. Transmission occurred in one cohabitating pair. Deep sequencing detected relatively few genetic changes in H1N1pdm viruses replicating in any infected animal. Together our data suggest that human H1N1pdm viruses require little adaptation to replicate and cause disease in marmosets, and that these viruses can be transmitted between animals. Marmosets may therefore be a viable model for studying influenza virus transmission. © 2013 Moncla et al

    Chemical Composition and Antioxidant Activities of Broussonetia papyrifera Fruits

    Get PDF
    Fruits of Broussonetia papyrifera from South China were analyzed for their total chemical composition, and antioxidant activities in ethanol and aqueous extracts. In the fruit of this plant, the crude protein, crude fat and carbohydrates was 7.08%, 3.72% and 64.73% of dry weight, respectively. The crude protein, crude fat and carbohydrates were 15.71%, 20.51% and 36.09% of dry weight, respectively. Fatty acid and amino acid composition of the fruit were analyzed. Unsaturated fatty acid concentration was 70.6% of the total fatty acids. The percentage of the essential amino acids (EAAs) was 40.60% of the total amino acids. Furthermore, B. papyrifera fruit are rich in many mineral elements and vitamins. Total phenolic content was assessed using the Folin-Ciocalteau assay, whereas antioxidant activities were assessed by measuring the ability of the two extracts to scavenge DPPH radicals, inhibit peroxidation, and chelate ferric ions. Their reducing power was also assessed. Results indicated that the aqueous extract of B. papyrifera was a more potent reducing agent and radical-scavenger than the ethanol extract. GC–MS analysis of the ethanol extract showed the presence of some acid-containing compounds. The changes in total phenolic content and antioxidant capacity in B. papyrifera from four different regions grown under normal conditions were assessed. The antioxidant activity of different extracts was positively associated with their total phenolic content. These results suggest that the fruit of B. papyrifera could be used in dietary supplement preparations, or as a food additive, for nutritional gain, or to prevent oxidation in food products

    TRPV1 enhances the afferent response to P2X receptor activation in the mouse urinary bladder

    Get PDF
    Both TRPV1 and P2X receptors present on bladder sensory nerve fibres have been implicated in mechanosensation during bladder filling. The aim of this study was to determine possible interactions between these receptors in modulating afferent nerve activity. In wildtype (TRPV1+/+) and TRPV1 knockout (TRPV1−/−) mice, bladder afferent nerve activity, intravesical pressure, and luminal ATP and acetylcholine levels were determined and also intracellular calcium responses of dissociated pelvic DRG neurones and primary mouse urothelial cells (PMUCs). Bladder afferent nerve responses to the purinergic agonist αβMethylene-ATP were depressed in TRPV1−/− mice (p ≤ 0.001) and also in TRPV1+/+ mice treated with the TRPV1-antagonist capsazepine (10 µM; p ≤ 0.001). These effects were independent of changes in bladder compliance or contractility. Responses of DRG neuron to αβMethylene-ATP (30 µM) were unchanged in the TRPV1−/− mice, but the proportion of responsive neurones was reduced (p ≤ 0.01). Although the TRPV1 agonist capsaicin (1 µM) did not evoke intracellular responses in PMUCs from TRPV1+/+ mice, luminal ATP levels were reduced in the TRPV1−/− mice (p ≤ 0.001) compared to wildtype. TRPV1 modulates P2X mediated afferent responses and provides a mechanistic basis for the decrease in sensory symptoms observed following resiniferatoxin and capsaicin treatment for lower urinary tract symptoms

    Deletion of the Mitochondrial Superoxide Dismutase sod-2 Extends Lifespan in Caenorhabditis elegans

    Get PDF
    The oxidative stress theory of aging postulates that aging results from the accumulation of molecular damage caused by reactive oxygen species (ROS) generated during normal metabolism. Superoxide dismutases (SODs) counteract this process by detoxifying superoxide. It has previously been shown that elimination of either cytoplasmic or mitochondrial SOD in yeast, flies, and mice results in decreased lifespan. In this experiment, we examine the effect of eliminating each of the five individual sod genes present in Caenorhabditis elegans. In contrast to what is observed in other model organisms, none of the sod deletion mutants shows decreased lifespan compared to wild-type worms, despite a clear increase in sensitivity to paraquat- and juglone-induced oxidative stress. In fact, even mutants lacking combinations of two or three sod genes survive at least as long as wild-type worms. Examination of gene expression in these mutants reveals mild compensatory up-regulation of other sod genes. Interestingly, we find that sod-2 mutants are long-lived despite a significant increase in oxidatively damaged proteins. Testing the effect of sod-2 deletion on known pathways of lifespan extension reveals a clear interaction with genes that affect mitochondrial function: sod-2 deletion markedly increases lifespan in clk-1 worms while clearly decreasing the lifespan of isp-1 worms. Combined with the mitochondrial localization of SOD-2 and the fact that sod-2 mutant worms exhibit phenotypes that are characteristic of long-lived mitochondrial mutants—including slow development, low brood size, and slow defecation—this suggests that deletion of sod-2 extends lifespan through a similar mechanism. This conclusion is supported by our demonstration of decreased oxygen consumption in sod-2 mutant worms. Overall, we show that increased oxidative stress caused by deletion of sod genes does not result in decreased lifespan in C. elegans and that deletion of sod-2 extends worm lifespan by altering mitochondrial function

    Alzheimer's Disease: a Review of its Visual System Neuropathology. Optical Coherence Tomography-a Potential Role As a Study Tool in Vivo

    Get PDF
    Alzheimer's disease (AD) is a prevalent, long-term progressive degenerative disorder with great social impact. It is currently thought that, in addition to neurodegeneration, vascular changes also play a role in the pathophysiology of the disease. Visual symptoms are frequent and are an early clinical manifestation; a number of psychophysiologic changes occur in visual function, including visual field defects, abnormal contrast sensitivity, abnormalities in color vision, depth perception deficits, and motion detection abnormalities. These visual changes were initially believed to be solely due to neurodegeneration in the posterior visual pathway. However, evidence from pathology studies in both animal models of AD and humans has demonstrated that neurodegeneration also takes place in the anterior visual pathway, with involvement of the retinal ganglion cells' (RGCs) dendrites, somata, and axons in the optic nerve. These studies additionally showed that patients with AD have changes in retinal and choroidal microvasculature. Pathology findings have been corroborated in in-vivo assessment of the retina and optic nerve head (ONH), as well as the retinal and choroidal vasculature. Optical coherence tomography (OCT) in particular has shown great utility in the assessment of these changes, and it may become a useful tool for early detection and monitoring disease progression in AD. The authors make a review of the current understanding of retinal and choroidal pathological changes in patients with AD, with particular focus on in-vivo evidence of retinal and choroidal neurodegenerative and microvascular changes using OCT technology.info:eu-repo/semantics/publishedVersio

    Histopathological alterations in Senegal sole, Solea Senegalensis, from a polluted Huelva estuary (SW, Spain)

    Get PDF
    As a component of a large research project to evaluate the effects of contaminants on fish health in the field, histopathological studies have been conducted to help establish causal relationship between pollutants (heavy metals and aromatic polycyclic hydrocarbons—PAHs) and histopathological responses in Senegal sole, Solea senegalensis, from an estuary of SW Spain. Heavy metals (As, Zn, Cd, Pb, Cu and Fe) and 16 PAHs (proprietary USEPA) concentrations in water, sediment and tissues (liver and gills) and histopathological alterations in S. senegalensis from three sampling sites of Ria de Huelva estuary during 2004–2006 years have been analysed. The histopathological studies revealed seasonal and spatial differences in the lesion grade of alterations observing the highest lesion grades in fish from Odiel River and autumn season. No significant differences were observed in the alterations prevalence between sampling sites, but significant differences were observed between seasons observing the highest prevalence in autumn season. However, calculated IPAT demonstrated a low–moderate impact of pollutants on health fish. Correlations between histopathological alterations and pollutants analysed were observed being heavy metals the group that presented a major number of correlations with alterations in several organs of S. senegalensis. In evaluating the general health of fish, the use of histopathological studies in recommended for making more reliable assessment of biochemical responses in fish exposed to a variety of environmental stressors. Statistical analysis using semiquantitative data on pathological lesions can help to establish correlation between cause (stressor) and effect (biomarker)

    Genomic insights into members of the candidate phylum Hyd24-12 common in mesophilic anaerobic digesters

    Get PDF
    Members of the candidate phylum Hyd24-12 are globally distributed, but no genomic information or knowledge about their morphology, physiology or ecology is available. In this study, members of the Hyd24-12 lineage were shown to be present and abundant in full-scale mesophilic anaerobic digesters at Danish wastewater treatment facilities. In some samples, a member of the Hyd24-12 lineage was one of the most abundant genus-level bacterial taxa, accounting for up to 8% of the bacterial biomass. Three closely related and near-complete genomes were retrieved using metagenome sequencing of full-scale anaerobic digesters. Genome annotation and metabolic reconstruction showed that they are Gram-negative bacteria likely involved in acidogenesis, producing acetate and hydrogen from fermentation of sugars, and may play a role in the cycling of sulphur in the digesters. Fluorescence in situ hybridization revealed single rod-shaped cells dispersed within the flocs. The genomic information forms a foundation for a more detailed understanding of their role in anaerobic digestion and provides the first insight into a hitherto undescribed branch in the tree of life
    corecore