36 research outputs found
Precipitation drives global variation in natural selection
Climate change has the potential to affect the ecology and evolution of every species on Earth. Although the ecological consequences of climate change are increasingly well documented, the effects of climate on the key evolutionary process driving adaptation - natural selection - are largely unknown. We report that aspects of precipitation and potential evapotranspiration, along with the North Atlantic Oscillation, predicted variation in selection across plant and animal populations throughout many terrestrial biomes, whereas temperature explained little variation. By showing that selection was influenced by climate variation, our results indicate that climate change may cause widespread alterations in selection regimes, potentially shifting evolutionary trajectories at a global scale
High Connectivity in the Deepwater Snapper Pristipomoides filamentosus (Lutjanidae) across the Indo-Pacific with Isolation of the Hawaiian Archipelago
In the tropical Indo-Pacific, most phylogeographic studies have focused on the shallow-water taxa that inhabit reefs to approximately 30 m depth. Little is known about the large predatory fishes, primarily snappers (subfamily Etelinae) and groupers (subfamily Epinephelinae) that occur at 100–400 m. These long-lived, slow-growing species support fisheries across the Indo-Pacific, yet no comprehensive genetic surveys within this group have been conducted. Here we contribute the first range-wide survey of a deepwater Indo-Pacific snapper, Pristipomoides filamentosus, with special focus on Hawai'i. We applied mtDNA cytochrome b and 11 microsatellite loci to 26 samples (N = 1,222) collected across 17,000 km from Hawai'i to the western Indian Ocean. Results indicate that P. filamentosus is a highly dispersive species with low but significant population structure (mtDNA ΦST = 0.029, microsatellite FST = 0.029) due entirely to the isolation of Hawai'i. No population structure was detected across 14,000 km of the Indo-Pacific from Tonga in the Central Pacific to the Seychelles in the western Indian Ocean, a pattern rarely observed in reef species. Despite a long pelagic phase (60–180 days), interisland dispersal as adults, and extensive gene flow across the Indo-Pacific, P. filamentosus is unable to maintain population connectivity with Hawai'i. Coalescent analyses indicate that P. filamentosus may have colonized Hawai'i 26 K–52 K y ago against prevailing currents, with dispersal away from Hawai'i dominating migration estimates. P. filamentosus harbors low genetic diversity in Hawai'i, a common pattern in marine fishes, and our data indicate a single archipelago-wide stock. However, like the Hawaiian Grouper, Hyporthodus quernus, this snapper had several significant pairwise comparisons (FST) clustered around the middle of the archipelago (St. Rogatien, Brooks Banks, Gardner) indicating that this region may be isolated or (more likely) receives input from Johnston Atoll to the south
Community-based citizen science projects can support the distributional monitoring of fishes
Effective conservation and fisheries management requires data to capture demographic processes and range limits for each species to maximize population health and productivity. This need is constrained by limited funding and resources, particularly for countries with large land areas and coastlines as well as expansive exclusive economic zones. This imbalance means that monitoring efforts are often focused on targets of commercial and recreational fishing, which results in incomplete distributional records for non-target, small-bodied, and/or cryptic species. Community-based citizen science projects offer one potential alternative for scientists and fisheries managers needing this type of information but lacking sufficient resources to gather it. This study investigated whether data sourced from an online citizen science project (iNaturalist: Australasian Fishes) can assist in the distributional monitoring of a subset of fish species. Given the regional focus of this citizen science project, distributional data in the form of occurrence records for abundant, protected, and threatened fish species as assessed by the International Union for Conservation of Nature in Australia and New Zealand were explored. Data for important commercial and recreational fishery targets in New South Wales were also explored, as a case study of a large jurisdiction with extensive monitoring requirements. The occurrence records for some of these categories of fishes were well represented in the quality-filtered citizen science data set, particularly endemic fishes whose threat status had not yet been assessed and species not currently under any form of management. Despite gaps in coverage between major urban centres, citizen science data for the best represented endemic fishes were qualitatively comparable to the available geographic distributions for these species. We suggest that quality-filtered citizen science data can in fact be used to improve taxonomic representation and the geographic breadth of species monitoring with increased participation
Robust environmental DNA assay development and validation: A case study with two vulnerable Australian fish
Analysis of environmental (e)DNA can facilitate an understanding of the presence and distribution of aquatic species. However, eDNA detection using quantitative PCR requires validated and standardized species-specific assay designs. This study presents two eDNA assays to detect Murray cod, Maccullochella peelii, and mulloway, Argyrosomus japonicus (two ecologically vulnerable Australian species), based on small fragments of the mitochondrial 12S ribosomal RNA gene. A comprehensive description of species-specific assay development, from assay design to testing in silico, in vitro and in situ, has been included to guide effective assay design and validation in future studies. The results indicate that the assay was species specific for M. peelii within its natural distribution. However, the assay also amplified genomic DNA from two allopatric and endangered congeners (Maccullochella ikei and Maccullochella mariensis), thus potentially facilitating their eDNA detection elsewhere. In contrast, the A. japonicus assay was highly species specific with no amplification among close relatives. Both target-species assays are highly sensitive to as few as four and 10 copies per PCR reaction, respectively. This study has demonstrated that the assays assessed are effective tools for detecting the targeted species in situ from environmental DNA samples, which will assist efforts to conserve and manage their stocks
Environmental DNA (eDNA) as a tool for assessing fish biomass: A review of approaches and future considerations for resource surveys
Environmental DNA (eDNA) has revolutionized our ability to identify the presence and distributions of terrestrial and aquatic organisms. Recent evidence suggests the concentration of eDNA could also provide a rapid, cost-effective indicator of abundance and/or biomass for fisheries stock assessments. Globally, fisheries resources are under immense pressure, and their sustainable harvest requires accurate information on the sizes of fished stocks. However, in many cases the required information remains elusive because of a reliance on imprecise or costly fishery-dependent and independent data. Here, we review the literature describing relationships between eDNA concentrations and fish abundance and/or biomass, as well as key influencing factors, as a precursor to determining the broader utility of eDNA for monitoring fish populations. We reviewed 63 studies published between 2012 and 2020 and found 90% identified positive relationships between eDNA concentrations and the abundance and/or biomass of focal species. Key influencing biotic factors included the taxon examined as well as their body size, distribution, reproduction, and migration. Key abiotic factors mostly comprised hydrological processes affecting the dispersal and persistence of eDNA, especially water flow and temperature, although eDNA collection methods were also influential. The cumulative influence of these different factors likely explains the substantial variability observed in eDNA concentrations, both within and among studies. Nevertheless, there is considerable evidence to support using eDNA as an ancillary tool for assessing fish population abundance and/or biomass across discrete spatio-temporal scales, following preliminary investigations to determine species- and context-specific factors influencing the eDNA abundance/biomass relationship. Advantages of eDNA monitoring relative to other approaches include reduced costs, increased efficiencies, and nonlethal sampling
A tetra(Ethylene Glycol) derivative of benzothiazole aniline enhances ras-mediated spinogenesis
The tetra(ethylene glycol) derivative of benzothiazole aniline, BTA-EG4, is a novel amyloid-binding small molecule that can penetrate the blood- brain barrier and protect cells from Aβ-induced toxicity. However, the effects of Aβ-targeting molecules on other cellular processes, including those that modulate synaptic plasticity, remain unknown. We report here that BTA-EG4 decreases Aβ levels, alters cell surface expression of amyloid precursor protein (APP), and improves memory in wild-type mice. Interestingly, the BTA-EG4-mediated behavioral improvement is not correlated with LTP, but with increased spinogenesis. The higher dendritic spine density reflects an increase in the number of functional synapses as determined by increased miniature EPSC (mEPSC) frequency without changes in presynaptic parameters or postsynaptic mEPSC amplitude. Additionally, BTA-EG4 requires APP to regulate dendritic spine density through a Ras signaling-dependent mechanism. Thus, BTA-EG4 may provide broad therapeutic benefits for improving neuronal and cognitive function, and may have implications in neurodegenerative disease therapy. © 2013 the authors