34 research outputs found
An Intelligent Safety System for Human-Centered Semi-Autonomous Vehicles
Nowadays, automobile manufacturers make efforts to develop ways to make cars
fully safe. Monitoring driver's actions by computer vision techniques to detect
driving mistakes in real-time and then planning for autonomous driving to avoid
vehicle collisions is one of the most important issues that has been
investigated in the machine vision and Intelligent Transportation Systems
(ITS). The main goal of this study is to prevent accidents caused by fatigue,
drowsiness, and driver distraction. To avoid these incidents, this paper
proposes an integrated safety system that continuously monitors the driver's
attention and vehicle surroundings, and finally decides whether the actual
steering control status is safe or not. For this purpose, we equipped an
ordinary car called FARAZ with a vision system consisting of four mounted
cameras along with a universal car tool for communicating with surrounding
factory-installed sensors and other car systems, and sending commands to
actuators. The proposed system leverages a scene understanding pipeline using
deep convolutional encoder-decoder networks and a driver state detection
pipeline. We have been identifying and assessing domestic capabilities for the
development of technologies specifically of the ordinary vehicles in order to
manufacture smart cars and eke providing an intelligent system to increase
safety and to assist the driver in various conditions/situations.Comment: 15 pages and 5 figures, Submitted to the international conference on
Contemporary issues in Data Science (CiDaS 2019), Learn more about this
project at https://iasbs.ac.ir/~ansari/fara