13 research outputs found

    Factors associated with compliance among users of solar water disinfection in rural Bolivia

    Get PDF
    ABSTRACT: BACKGROUND: Diarrhoea is the second leading cause of childhood mortality, with an estimated 1.3 million deaths per year. Promotion of Solar Water Disinfection (SODIS) has been suggested as a strategy for reducing the global burden of diarrhoea by improving the microbiological quality of drinking water. Despite increasing support for the large-scale dissemination of SODIS, there are few reports describing the effectiveness of its implementation. It is, therefore, important to identify and understand the mechanisms that lead to adoption and regular use of SODIS. METHODS: We investigated the behaviours associated with SODIS adoption among households assigned to receive SODIS promotion during a cluster-randomized trial in rural Bolivia. Distinct groups of SODIS-users were identified on the basis of six compliance indicators using principal components and cluster analysis. The probability of adopting SODIS as a function of campaign exposure and household characteristics was evaluated using ordinal logistic regression models. RESULTS: Standardised, community-level SODIS-implementation in a rural Bolivian setting was associated with a median SODIS use of 32% (IQR: 17-50). Households that were more likely to use SODIS were those that participated more frequently in SODIS promotional events (OR = 1.07, 95%CI: 1.01-1.13), included women (OR = 1.18, 95%CI: 1.07-1.30), owned latrines (OR = 3.38, 95%CI: 1.07-10.70), and had severely wasted children living in the home (OR = 2.17, 95%CI: 1.34-3.49). CONCLUSIONS: Most of the observed household characteristics showed limited potential to predict compliance with a comprehensive, year-long SODIS-promotion campaign; this finding reflects the complexity of behaviour change in the context of household water treatment. However, our findings also suggest that the motivation to adopt new water treatment habits and to acquire new knowledge about drinking water treatment is associated with prior engagements in sanitary hygien and with the experience of contemporary family health concerns.Household-level factors like the ownership of a latrine, a large proportion of females and the presence of a malnourished child living in a home are easily assessable indicators that SODIS-programme managers could use to identify early adopters in SODIS promotion campaigns. TRIAL REGISTRATION: ClinicalTrials.gov: NCT0073149

    Geochemistry of the Serifos calc-alkaline granodiorite pluton, Greece: constraining the crust and mantle contributions to I-type granitoids

    Full text link
    The Late Miocene (11.6–9.5 Ma) granitoid intrusion on the island of Serifos (Western Cyclades, Aegean Sea) is composed of syn- to post-tectonic granodiorite with quartz monzodiorite enclaves, cut by dacitic and aplitic dikes. The granitoid, a typical I-type metaluminous calcic amphibole-bearing calc-alkaline pluton, intruded the Cycladic Blueschists during thinning of the Aegean plate. Combining field, textural, geochemical and new Sr–Nd–O isotope data presented in this paper, we postulate that the Serifos intrusion is a single-zoned pluton. The central facies has initial 87Sr/86Sr = 0.70906 to 0.7106, ΔNd(t) = − 5.9 to −  7.5 and ÎŽ18Οqtz = + 10 to + 10.6‰, whereas the marginal zone (or border facies) has higher initial 87Sr/86Sr = 0.711 to 0.7112, lower Δ Nd(t) = −  7.3 to − 8.3, and higher ÎŽ18Οqtz = + 10.6 to + 11.9‰. The small range in initial Sr and Nd isotopic values throughout the pluton is paired with a remarkable uniformity in trace element patterns, despite a large range in silica contents (58.8 to 72 wt% SiO2). Assimilation of a crustally derived partial melt into the mafic parental magma would progressively add incompatible trace elements and SiO2 to the evolving mafic starting liquid, but the opposite trend, of trace element depletion during magma evolution, is observed in the Serifos granodiorites. Thermodynamic modeling of whole-rock compositions during simple fractional crystallization (FC) or assimilation-fractional crystallization (AFC) processes of major rock-forming minerals—at a variety of pressure, oxidation state, and water activity conditions—fails to reproduce simultaneously the major element and trace element variations among the Serifos granitoids, implying a critical role for minor phases in controlling trace element fractionation. Both saturation of accessory phases such as allanite and titanite (at SiO2 ≄ 71 wt%)(to satisfy trace element constraints) and assimilation of partial melts from a metasedimentary component (to match isotopic data) must have accompanied fractional crystallization of the major phases
    corecore