265 research outputs found
Diffusion and Monod kinetics model to determine in vivo human corneal oxygen-consumption rate during soft contact lens wear
PURPOSE: We present an analysis of the corneal oxygen consumption Qc from non-linear models, using data of oxygen partial pressure or tension (P(O2) ) obtained from in vivo estimation previously reported by other authors. (1) METHODS: Assuming that the cornea is a single homogeneous layer, the oxygen permeability through the cornea will be the same regardless of the type of lens that is available on it. The obtention of the real value of the maximum oxygen consumption rate Qc,max is very important because this parameter is directly related with the gradient pressure profile into the cornea and moreover, the real corneal oxygen consumption is influenced by both anterior and posterior oxygen fluxes.
RESULTS: Our calculations give different values for the maximum oxygen consumption rate Qc,max, when different oxygen pressure values (high and low P(O2)) are considered at the interface cornea-tears film.
CONCLUSION: Present results are relevant for the calculation on the partial pressure of oxygen, available at different depths into the corneal tissue behind contact lenses of different oxygen transmissibility.Del Castillo, LF.; Ferreira Da Silva, AR.; Hernández, SI.; Aguiella-Arzo, M.; Balado, A.; Mollá Romano, S.; Compañ Moreno, V. (2015). Diffusion and Monod kinetics model to determine in vivo human corneal oxygen-consumption rate during soft contact lens wear. Journal of Optometry. 8(1):12-18. doi:10.1016/j.optom.2014.06.002S12188
Prognostic Significance of Growth Kinetics in Newly Diagnosed Glioblastomas Revealed by Combining Serial Imaging with a Novel Biomathematical Model
Glioblastomas (GBMs) are the most aggressive primary brain tumors characterized by their rapid proliferation and diffuse infiltration of the brain tissue. Survival patterns in patients with GBM have been associated with a number of clinico-pathologic factors, including age and neurological status, yet a significant quantitative link to in vivo growth kinetics of each glioma has remained elusive. Exploiting a recently developed tool for quantifying glioma net proliferation and invasion rates in individual patients using routinely available magnetic resonance images (MRIs), we propose to link these patient-specific kinetic rates of biological aggressiveness to prognostic significance. Using our biologically-based mathematical model for glioma growth and invasion, examination of serial pre-treatment MRIs of 32 GBM patients allowed quantification of these rates for each patient’s tumor. Survival analyses revealed that even when controlling for standard clinical parameters (e.g., age, KPS) these model-defined parameters quantifying biologically aggressiveness (net proliferation and invasion rates) were significantly associated with prognosis. One hypothesis generated was that the ratio of the actual survival time after whatever therapies were employed to the duration of survival predicted (by the model) without any therapy would provide a “Therapeutic Response Index” (TRI) of the overall effectiveness of the therapies. The TRI may provided important information, not otherwise available, as to the effectiveness of the treatments in individual patients. To our knowledge, this is the first report indicating that dynamic insight from routinely obtained pre-treatment imaging may be quantitatively useful in characterizing survival of individual patients with GBM. Such a hybrid tool bridging mathematical modeling and clinical imaging may allow for statifying patients for clinical studies relative to their pretreatment biological aggressiveness
A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle
The prediction of the outcome of individual patients with glioblastoma would be of great significance for monitoring responses to therapy. We hypothesise that, although a large number of genetic-metabolic abnormalities occur upstream, there are two ‘final common pathways' dominating glioblastoma growth – net rates of proliferation (ρ) and dispersal (D). These rates can be estimated from features of pretreatment MR images and can be applied in a mathematical model to predict tumour growth, impact of extent of tumour resection and patient survival. Only the pre-operative gadolinium-enhanced T1-weighted (T1-Gd) and T2-weighted (T2) volume data from 70 patients with previously untreated glioblastoma were used to derive a ratio D/ρ for each patient. We developed a ‘virtual control' for each patient with the same size tumour at the time of diagnosis, the same ratio of net invasion to proliferation (D/ρ) and the same extent of resection. The median durations of survival and the shapes of the survival curves of actual and ‘virtual' patients subjected to biopsy or subtotal resection (STR) superimpose exactly. For those actually receiving gross total resection (GTR), as shown by post-operative CT, the actual survival curve lies between the ‘virtual' results predicted for 100 and 125% resection of the T1-Gd volume. The concordance between predicted (virtual) and actual survivals suggests that the mathematical model is realistic enough to allow precise definition of the effectiveness of individualised treatments and their site(s) of action on proliferation (ρ) and/or dispersal (D) of the tumour cells without knowledge of any other clinical or pathological information
Serum S100A6 Concentration Predicts Peritoneal Tumor Burden in Mice with Epithelial Ovarian Cancer and Is Associated with Advanced Stage in Patients
BACKGROUND:Ovarian cancer is the 5th leading cause of cancer related deaths in women. Five-year survival rates for early stage disease are greater than 94%, however most women are diagnosed in advanced stage with 5 year survival less than 28%. Improved means for early detection and reliable patient monitoring are needed to increase survival. METHODOLOGY AND PRINCIPAL FINDINGS:Applying mass spectrometry-based proteomics, we sought to elucidate an unanswered biomarker research question regarding ability to determine tumor burden detectable by an ovarian cancer biomarker protein emanating directly from the tumor cells. Since aggressive serous epithelial ovarian cancers account for most mortality, a xenograft model using human SKOV-3 serous ovarian cancer cells was established to model progression to disseminated carcinomatosis. Using a method for low molecular weight protein enrichment, followed by liquid chromatography and mass spectrometry analysis, a human-specific peptide sequence of S100A6 was identified in sera from mice with advanced-stage experimental ovarian carcinoma. S100A6 expression was documented in cancer xenografts as well as from ovarian cancer patient tissues. Longitudinal study revealed that serum S100A6 concentration is directly related to tumor burden predictions from an inverse regression calibration analysis of data obtained from a detergent-supplemented antigen capture immunoassay and whole-animal bioluminescent optical imaging. The result from the animal model was confirmed in human clinical material as S100A6 was found to be significantly elevated in the sera from women with advanced stage ovarian cancer compared to those with early stage disease. CONCLUSIONS:S100A6 is expressed in ovarian and other cancer tissues, but has not been documented previously in ovarian cancer disease sera. S100A6 is found in serum in concentrations that correlate with experimental tumor burden and with clinical disease stage. The data signify that S100A6 may prove useful in detecting and/or monitoring ovarian cancer, when used in concert with other biomarkers
Impact of resilience enhancing programs on youth surviving the Beslan school siege
The objective of this study was to evaluate a resilience-enhancing program for youth (mean age = 13.32 years) from Beslan, North Ossetia, in the Russian Federation. The program, offered in the summer of 2006, combined recreation, sport, and psychosocial rehabilitation activities for 94 participants, 46 of who were taken hostage in the 2004 school tragedy and experienced those events first hand. Self-reported resilience, as measured by the CD-RISC, was compared within subjects at the study baseline and at two follow-up assessments: immediately after the program and 6 months later. We also compared changes in resilience levels across groups that differed in their traumatic experiences. The results indicate a significant intra-participant mean increase in resilience at both follow-up assessments, and greater self-reported improvements in resilience processes for participants who experienced more trauma events
Ontogeny-Driven rDNA Rearrangement, Methylation, and Transcription, and Paternal Influence
Gene rearrangement occurs during development in some cell types and this genome dynamics is modulated by intrinsic and extrinsic factors, including growth stimulants and nutrients. This raises a possibility that such structural change in the genome and its subsequent epigenetic modifications may also take place during mammalian ontogeny, a process undergoing finely orchestrated cell division and differentiation. We tested this hypothesis by comparing single nucleotide polymorphism-defined haplotype frequencies and DNA methylation of the rDNA multicopy gene between two mouse ontogenic stages and among three adult tissues of individual mice. Possible influences to the genetic and epigenetic dynamics by paternal exposures were also examined for Cr(III) and acid saline extrinsic factors. Variables derived from litters, individuals, and duplicate assays in large mouse populations were examined using linear mixed-effects model. We report here that active rDNA rearrangement, represented by changes of haplotype frequencies, arises during ontogenic progression from day 8 embryos to 6-week adult mice as well as in different tissue lineages and is modifiable by paternal exposures. The rDNA methylation levels were also altered in concordance with this ontogenic progression and were associated with rDNA haplotypes. Sperm showed highest level of methylation, followed by lungs and livers, and preferentially selected haplotypes that are positively associated with methylation. Livers, maintaining lower levels of rDNA methylation compared with lungs, expressed more rRNA transcript. In vitro transcription demonstrated haplotype-dependent rRNA expression. Thus, the genome is also dynamic during mammalian ontogeny and its rearrangement may trigger epigenetic changes and subsequent transcriptional controls, that are further influenced by paternal exposures
Caloric vestibular stimulation modulates nociceptive evoked potentials
Vestibular stimulation has been reported to alleviate central pain. Clinical and physiological studies confirm pervasive interactions between vestibular signals and somatosensory circuits, including nociception. However, the neural mechanisms underlying vestibular-induced analgesia remain unclear, and previous clinical studies cannot rule out explanations based on alternative, non-specific effects such as distraction or placebo. To investigate how vestibular inputs influence nociception, we combined caloric vestibular stimulation (CVS) with psychophysical and electrocortical responses elicited by nociceptive-specific laser stimulation in humans (laser-evoked potentials, LEPs). Cold water CVS applied to the left ear resulted in significantly lower subjective pain intensity for experimental laser pain to the left hand immediately after CVS, relative both to before CVS and to 1 h after CVS. This transient reduction in pain perception was associated with reduced amplitude of all LEP components, including the early N1 wave reflecting the first arrival of nociceptive input to primary somatosensory cortex. We conclude that cold left ear CVS elicits a modulation of both nociceptive processing and pain perception. The analgesic effect induced by CVS could be mediated either by subcortical gating of the ascending nociceptive input, or by direct modulation of the primary somatosensory cortex
- …