963 research outputs found
The Equivalence Principle and g-2 Experiments
We consider the possibility of using measurements of anomalous magnetic
moments of elementary particles as a possible test of the Einstein Equivalence
Principle (EEP). For the class non-metric theories of gravity described by the
\tmu formalism we find several novel mechanisms for breaking the EEP, and
discuss the possibilities of setting new empirical constraints on such effects.Comment: 4 pages, latex, epsf, 1 figur
LabVIEW interface with Tango control system for a multi-technique X-ray spectrometry IAEA beamline end-station at Elettra Sincrotrone Trieste
A new synchrotron beamline end-station for multipurpose X-ray spectrometry applications has been recently commissioned and it is currently accessible by end-users at the XRF beamline of Elettra Sincrotrone Trieste. The end-station consists of an ultra-high vacuum chamber that includes as main instrument a seven-axis motorized manipulator for sample and detectors positioning, different kinds of X-ray detectors and optical cameras. The beamline end-station allows performing measurements in different X-ray spectrometry techniques such as Microscopic X-Ray Fluorescence analysis (µXRF), Total Reflection X-Ray Fluorescence analysis (TXRF), Grazing Incidence/Exit X-Ray Fluorescence analysis (GI-XRF/GE-XRF), X-Ray Reflectometry (XRR), and X-Ray Absorption Spectroscopy (XAS). A LabVIEW Graphical User Interface (GUI) bound with Tango control system consisted of many custom made software modules is utilized as a user-friendly tool for control of the entire end-station hardware components. The present work describes this advanced Tango and LabVIEW software platform that utilizes in an optimal synergistic manner the merits and functionality of these well-established programming and equipment control tools
Dynamical Compactification, Standard Cosmology and the Accelerating Universe
A cosmological model based on Kaluza-Klein theory is studied. A metric, in
which the scale factor of the compact space evolves as an inverse power of the
radius of the observable universe, is constructed. The
Freedmann-Robertson-Walker equations of standard four-dimensional cosmology are
obtained precisely. The pressure in our universe is an effective pressure
expressed in terms of the components of the higher dimensional energy-momentum
tensor. In particular, this effective pressure could be negative and might
therefore explain the acceleration of our present universe. A special feature
of this model is that, for a suitable choice of the parameters of the metric,
the higher dimensional gravitational coupling constant could be negative.Comment: 11 pages, uses revte
Induced Parity-Breaking Term at Finite Chemical Potential and Temparature
We exactly calculated the parity-odd term of the effective action induced by
the fermions in 2+1 dimensions at finite chemical potential and finite
temperature. It shows that gauge invariance is still respected. A more gerneral
class of background configurations is considered. The knowledge of the reduced
1+1 determinant is required in order to draw exact conclusions about the gauge
invariance of the parity-odd term in this latter case.Comment: 8 pages, LATEX, no figure
Tunable variation of optical properties of polymer capped gold nanoparticles
Optical properties of polymer capped gold nanoparticles of various sizes
(diameter 3-6 nm) have been studied. We present a new scheme to extract size
dependent variation of total dielectric function of gold nanoparticles from
measured UV-Vis absorption data. The new scheme can also be used, in principle,
for other related systems as well. We show how quantum effect, surface atomic
co - ordination and polymer - nanoparticle interface morphology leads to a
systematic variation in inter band part of the dielectric function of gold
nanoparticles, obtained from the analysis using our new scheme. Careful
analysis enables identification of the possible changes to the electronic band
structure in such nanoparticles.Comment: 13 pages,7 figures, 1 tabl
Dynamic Evolution Model of Isothermal Voids and Shocks
We explore self-similar hydrodynamic evolution of central voids embedded in
an isothermal gas of spherical symmetry under the self-gravity. More
specifically, we study voids expanding at constant radial speeds in an
isothermal gas and construct all types of possible void solutions without or
with shocks in surrounding envelopes. We examine properties of void boundaries
and outer envelopes. Voids without shocks are all bounded by overdense shells
and either inflows or outflows in the outer envelope may occur. These
solutions, referred to as type void solutions, are further
divided into subtypes and
according to their characteristic behaviours across the sonic critical line
(SCL). Void solutions with shocks in envelopes are referred to as type
voids and can have both dense and quasi-smooth edges.
Asymptotically, outflows, breezes, inflows, accretions and static outer
envelopes may all surround such type voids. Both cases of
constant and varying temperatures across isothermal shock fronts are analyzed;
they are referred to as types and
void shock solutions. We apply the `phase net matching procedure' to construct
various self-similar void solutions. We also present analysis on void
generation mechanisms and describe several astrophysical applications. By
including self-gravity, gas pressure and shocks, our isothermal self-similar
void (ISSV) model is adaptable to various astrophysical systems such as
planetary nebulae, hot bubbles and superbubbles in the interstellar medium as
well as supernova remnants.Comment: 24 pages, 13 figuers, accepted by ApS
Microscopic transition potential: Determination of and coupling constants
A transition potential, based on an effective
quark-quark interaction and a constituent quark cluster model for baryons, is
derived in the Born-Oppenheimer approach. The potential shows significant
differences with respect to those obtained by a direct scaling of the
nucleon-nucleon interaction. From its asymptotic behavior we extract the values
of and coupling constants in a
particular coupling schemeComment: 15 eps figures, Accepted for publication in Phys. Rev.
Off-Diagonal Elements of the DeWitt Expansion from the Quantum Mechanical Path Integral
The DeWitt expansion of the matrix element M_{xy} = \left\langle x \right|
\exp -[\case{1}{2} (p-A)^2 + V]t \left| y \right\rangle, in
powers of can be made in a number of ways. For (the case of interest
when doing one-loop calculations) numerous approaches have been employed to
determine this expansion to very high order; when (relevant for
doing calculations beyond one-loop) there appear to be but two examples of
performing the DeWitt expansion. In this paper we compute the off-diagonal
elements of the DeWitt expansion coefficients using the Fock-Schwinger gauge.
Our technique is based on representing by a quantum mechanical path
integral. We also generalize our method to the case of curved space, allowing
us to determine the DeWitt expansion of \tilde M_{xy} = \langle x| \exp
\case{1}{2} [\case{1}{\sqrt {g}} (\partial_\mu - i
A_\mu)g^{\mu\nu}{\sqrt{g}}(\partial_\nu - i A_\nu) ] t| y \rangle by use of
normal coordinates. By comparison with results for the DeWitt expansion of this
matrix element obtained by the iterative solution of the diffusion equation,
the relative merit of different approaches to the representation of as a quantum mechanical path integral can be assessed. Furthermore, the
exact dependence of on some geometric scalars can be
determined. In two appendices, we discuss boundary effects in the
one-dimensional quantum mechanical path integral, and the curved space
generalization of the Fock-Schwinger gauge.Comment: 16pp, REVTeX. One additional appendix concerning end-point effects
for finite proper-time intervals; inclusion of these effects seem to make our
results consistent with those from explicit heat-kernel method
Potts model on recursive lattices: some new exact results
We compute the partition function of the Potts model with arbitrary values of
and temperature on some strip lattices. We consider strips of width
, for three different lattices: square, diced and `shortest-path' (to be
defined in the text). We also get the exact solution for strips of the Kagome
lattice for widths . As further examples we consider two lattices
with different type of regular symmetry: a strip with alternating layers of
width and , and a strip with variable width. Finally we make
some remarks on the Fisher zeros for the Kagome lattice and their large
q-limit.Comment: 17 pages, 19 figures. v2 typos corrected, title changed and
references, acknowledgements and two further original examples added. v3 one
further example added. v4 final versio
- …