31,197 research outputs found

    Revisiting Minimal Lepton Flavour Violation in the Light of Leptonic CP Violation

    Full text link
    The Minimal Lepton Flavour Violation (MLFV) framework is discussed after the recent indication for CP violation in the leptonic sector. Among the three distinct versions of MLFV, the one with degenerate right-handed neutrinos will be disfavoured, if this indication is confirmed. The predictions for leptonic radiative rare decays and muon conversion in nuclei are analysed, identifying strategies to disentangle the different MLFV scenarios. The claim that the present anomalies in the semi-leptonic BB-meson decays can be explained within the MLFV context is critically re-examined concluding that such an explanation is not compatible with the present bounds from purely leptonic processes.Comment: 36 pages, 4 figures. V2: References added; version accepted for publication on JHE

    Gauge Symmetry and Consistent Spin-Two Theories

    Get PDF
    We study Lagrangians with the minimal amount of gauge symmetry required to propagate spin-two particles without ghosts or tachyons. In general, these Lagrangians also have a scalar mode in their spectrum. We find that, in two cases, the symmetry can be enhanced to a larger group: the whole group of diffeomorphisms or a enhancement involving a Weyl symmetry. We consider the non-linear completions of these theories. The intuitive completions yield the usual scalar-tensor theories except for the pure spin-two cases, which correspond to two inequivalent Lagrangians giving rise to Einstein's equations. A more constructive self-consistent approach yields a background dependent Lagrangian.Comment: 7 pages, proceedings of IRGAC'06; typo correcte

    Inelastic electron-nucleus scattering and scaling at high inelasticity

    Get PDF
    Highly inelastic electron scattering is analyzed within the context of the unified relativistic approach previously considered in the case of quasielastic kinematics. Inelastic relativistic Fermi gas modeling that includes the complete inelastic spectrum - resonant, non-resonant and Deep Inelastic Scattering - is elaborated and compared with experimental data. A phenomenological extension of the model based on direct fits to data is also introduced. Within both models, cross sections and response functions are evaluated and binding energy effects are analyzed. Finally, an investigation of the second-kind scaling behavior is also presented.Comment: 39 pages, 13 figures; formalism extended and slightly reorganized, conclusions extended; to appear in Phys. Rev.

    Torsion cycles as non-local magnetic sources in non-orientable spaces

    Full text link
    Non-orientable spaces can appear to carry net magnetic charge, even in the absence of magnetic sources. It is shown that this effect can be understood as a physical manifestation of the existence of torsion cycles of codimension one in the homology of space.Comment: 17 pages, 4 figure

    Molecular Model of the Contractile Ring

    Full text link
    We present a model for the actin contractile ring of adherent animal cells. The model suggests that the actin concentration within the ring and consequently the power that the ring exerts both increase during contraction. We demonstrate the crucial role of actin polymerization and depolymerization throughout cytokinesis, and the dominance of viscous dissipation in the dynamics. The physical origin of two phases in cytokinesis dynamics ("biphasic cytokinesis") follows from a limitation on the actin density. The model is consistent with a wide range of measurements of the midzone of dividing animal cells.Comment: PACS numbers: 87.16.Ka, 87.16.Ac http://www.ncbi.nlm.nih.gov/pubmed/16197254 http://www.weizmann.ac.il/complex/tlusty/papers/PhysRevLett2005.pd

    Duality in Non-Trivially Compactified Heterotic Strings

    Full text link
    We study the implications of duality symmetry on the analyticity properties of the partition function as it depends upon the compactification length. In order to obtain non-trivial compactifications, we give a physical prescription to get the Helmholtz free energy for any heterotic string supersymmetric or not. After proving that the free energy is always invariant under the duality transformation Rα/(4R)R\rightarrow \alpha^{'}/(4R) and getting the zero temperature theory whose partition function corresponds to the Helmholtz potential, we show that the self-dual point R0=α/2R_{0}=\sqrt{\alpha^{'}}/2 is a generic singularity as the Hagedorn one. The main difference between these two critical compactification radii is that the term producing the singularity at the self-dual point is finite for any RR0R \neq R_{0}. We see that this behavior at R0R_{0} actually implies a loss of degrees of freedom below that point.Comment: (Preprint No. FTUAM-92/12) 17 page
    corecore