31,197 research outputs found
Revisiting Minimal Lepton Flavour Violation in the Light of Leptonic CP Violation
The Minimal Lepton Flavour Violation (MLFV) framework is discussed after the
recent indication for CP violation in the leptonic sector. Among the three
distinct versions of MLFV, the one with degenerate right-handed neutrinos will
be disfavoured, if this indication is confirmed. The predictions for leptonic
radiative rare decays and muon conversion in nuclei are analysed, identifying
strategies to disentangle the different MLFV scenarios. The claim that the
present anomalies in the semi-leptonic -meson decays can be explained within
the MLFV context is critically re-examined concluding that such an explanation
is not compatible with the present bounds from purely leptonic processes.Comment: 36 pages, 4 figures. V2: References added; version accepted for
publication on JHE
Gauge Symmetry and Consistent Spin-Two Theories
We study Lagrangians with the minimal amount of gauge symmetry required to
propagate spin-two particles without ghosts or tachyons. In general, these
Lagrangians also have a scalar mode in their spectrum. We find that, in two
cases, the symmetry can be enhanced to a larger group: the whole group of
diffeomorphisms or a enhancement involving a Weyl symmetry. We consider the
non-linear completions of these theories. The intuitive completions yield the
usual scalar-tensor theories except for the pure spin-two cases, which
correspond to two inequivalent Lagrangians giving rise to Einstein's equations.
A more constructive self-consistent approach yields a background dependent
Lagrangian.Comment: 7 pages, proceedings of IRGAC'06; typo correcte
Inelastic electron-nucleus scattering and scaling at high inelasticity
Highly inelastic electron scattering is analyzed within the context of the
unified relativistic approach previously considered in the case of quasielastic
kinematics. Inelastic relativistic Fermi gas modeling that includes the
complete inelastic spectrum - resonant, non-resonant and Deep Inelastic
Scattering - is elaborated and compared with experimental data. A
phenomenological extension of the model based on direct fits to data is also
introduced. Within both models, cross sections and response functions are
evaluated and binding energy effects are analyzed. Finally, an investigation of
the second-kind scaling behavior is also presented.Comment: 39 pages, 13 figures; formalism extended and slightly reorganized,
conclusions extended; to appear in Phys. Rev.
Torsion cycles as non-local magnetic sources in non-orientable spaces
Non-orientable spaces can appear to carry net magnetic charge, even in the
absence of magnetic sources. It is shown that this effect can be understood as
a physical manifestation of the existence of torsion cycles of codimension one
in the homology of space.Comment: 17 pages, 4 figure
Molecular Model of the Contractile Ring
We present a model for the actin contractile ring of adherent animal cells.
The model suggests that the actin concentration within the ring and
consequently the power that the ring exerts both increase during contraction.
We demonstrate the crucial role of actin polymerization and depolymerization
throughout cytokinesis, and the dominance of viscous dissipation in the
dynamics. The physical origin of two phases in cytokinesis dynamics ("biphasic
cytokinesis") follows from a limitation on the actin density. The model is
consistent with a wide range of measurements of the midzone of dividing animal
cells.Comment: PACS numbers: 87.16.Ka, 87.16.Ac
http://www.ncbi.nlm.nih.gov/pubmed/16197254
http://www.weizmann.ac.il/complex/tlusty/papers/PhysRevLett2005.pd
Duality in Non-Trivially Compactified Heterotic Strings
We study the implications of duality symmetry on the analyticity properties
of the partition function as it depends upon the compactification length. In
order to obtain non-trivial compactifications, we give a physical prescription
to get the Helmholtz free energy for any heterotic string supersymmetric or
not. After proving that the free energy is always invariant under the duality
transformation and getting the zero temperature
theory whose partition function corresponds to the Helmholtz potential, we show
that the self-dual point is a generic singularity
as the Hagedorn one. The main difference between these two critical
compactification radii is that the term producing the singularity at the
self-dual point is finite for any . We see that this behavior at
actually implies a loss of degrees of freedom below that point.Comment: (Preprint No. FTUAM-92/12) 17 page
- …