1,782 research outputs found

    Fluctons

    Get PDF
    From the perspective of topological field theory we explore the physics beyond instantons. We propose the fluctons as nonperturbative topological fluctuations of vacuum, from which the self-dual domain of instantons is attained as a particular case. Invoking the Atiyah-Singer index theorem, we determine the dimension of the corresponding flucton moduli space, which gives the number of degrees of freedom of the fluctons. An important consequence of these results is that the topological phases of vacuum in non-Abelian gauge theories are not necessarily associated with self-dual fields, but only with smooth fields. Fluctons in different scenarios are considered, the basic aspects of the quantum mechanical amplitude for fluctons are discussed, and the case of gravity is discussed briefly

    Discovery of coherent millisecond X-ray pulsations in Aql X-1

    Full text link
    We report the discovery of an episode of coherent millisecond X-ray pulsation in the neutron star low-mass X-ray binary Aql X-1. The episode lasts for slightly more than 150 seconds, during which the pulse frequency is consistent with being constant. No X-ray burst or other evidence of thermonuclear burning activity is seen in correspondence with the pulsation, which can thus be identified as occurring in the persistent emission. The pulsation frequency is 550.27 Hz, very close (0.5 Hz higher) to the maximum reported frequency from burst oscillations in this source. Hence we identify this frequency with the neutron star spin frequency. The pulsed fraction is strongly energy dependent, ranging from 10% (16-30 keV). We discuss possible physical interpretations and their consequences for our understanding of the lack of pulsation in most neutron star low-mass X-ray binaries. If interpreted as accretion-powered pulsation, Aql X-1 might play a key role in understanding the differences between pulsating and non-pulsating sources.Comment: 5 pages, 3 figures, accepted by ApJ Letters after minor revisions. Slightly extended discussion. One author added. Uses emulateapj.cl

    Low-frequency QPO from the 11 Hz accreting pulsar in Terzan 5: not frame dragging

    Full text link
    We report on 6 RXTE observations taken during the 2010 outburst of the 11 Hz accreting pulsar IGR J17480-2446 located in the globular cluster Terzan 5. During these observations we find power spectra which resemble those seen in Z-type high-luminosity neutron star low-mass X-ray binaries, with a quasi-periodic oscillation (QPO) in the 35-50 Hz range simultaneous with a kHz QPO and broad band noise. Using well known frequency-frequency correlations, we identify the 35-50 Hz QPOs as the horizontal branch oscillations (HBO), which were previously suggested to be due to Lense-Thirring precession. As IGR J17480-2446 spins more than an order of magnitude more slowly than any of the other neutron stars where these QPOs were found, this QPO can not be explained by frame dragging. By extension, this casts doubt on the Lense-Thirring precession model for other low-frequency QPOs in neutron-star and perhaps even black-hole systems.Comment: 6 pages, 5 figures, Accepted for publication in ApJ

    The connection between the peaks in velocity dispersion and star-forming clumps of turbulent galaxies

    Full text link
    We present Keck/OSIRIS adaptive optics observations with 150-400 pc spatial sampling of 7 turbulent, clumpy disc galaxies from the DYNAMO sample (0.07<z<0.20.07<z<0.2). DYNAMO galaxies have previously been shown to be well matched in properties to main sequence galaxies at z1.5z\sim1.5. Integral field spectroscopy observations using adaptive optics are subject to a number of systematics including a variable PSF and spatial sampling, which we account for in our analysis. We present gas velocity dispersion maps corrected for these effects, and confirm that DYNAMO galaxies do have high gas velocity dispersion (σ=4080\sigma=40-80\kms), even at high spatial sampling. We find statistically significant structure in 6 out of 7 galaxies. The most common distance between the peaks in velocity dispersion and emission line peaks is 0.5\sim0.5~kpc, we note this is very similar to the average size of a clump measured with HST Hα\alpha maps. This could suggest that the peaks in velocity dispersion in clumpy galaxies likely arise due to some interaction between the clump and the surrounding ISM of the galaxy, though our observations cannot distinguish between outflows, inflows or velocity shear. Observations covering a wider area of the galaxies will be needed to confirm this result.Comment: Accepted for publication in MNRA

    An X-ray view of the very faint black hole X-ray transient Swift J1357.2-0933 during its 2011 outburst

    Get PDF
    We report on the X-ray spectral (using XMM-Newton data) and timing behavior (using XMM-Newton and Rossi X-ray Timing Explorer [RXTE] data) of the very faint X-ray transient and black hole system Swift J1357.2-0933 during its 2011 outburst. The XMM-Newton X-ray spectrum of this source can be adequately fitted with a soft thermal component with a temperature of ~0.22 keV (using a disc model) and a hard, non-thermal component with a photon index of ~1.6 when using a simple power-law model. In addition, an edge at ~ 0.73 keV is needed likely due to interstellar absorption. During the first RXTE observation we find a 6 mHz quasi-periodic oscillation (QPO) which is not present during any of the later RXTE observations or during the XMM-Newton observation which was taken 3 days after the first RXTE observation. The nature of this QPO is not clear but it could be related to a similar QPO seen in the black hole system H 1743-322 and to the so-called 1 Hz QPO seen in the dipping neutron-star X-ray binaries (although this later identification is quite speculative). The observed QPO has similar frequencies as the optical dips seen previously in this source during its 2011 outburst but we cannot conclusively determine that they are due to the same underlying physical mechanism. Besides the QPO, we detect strong band-limited noise in the power-density spectra of the source (as calculated from both the RXTE and the XMM-Newton data) with characteristic frequencies and strengths very similar to other black hole X-ray transients when they are at low X-ray luminosities. We discuss the spectral and timing properties of the source in the context of the proposed very high inclination of this source. We conclude that all the phenomena seen from the source cannot, as yet, be straightforwardly explained neither by an edge-on configuration nor by any other inclination configuration of the orbit.Comment: 9 pages, 4 figures, 1 table. Accepted for publication in MNRA

    Measuring and accounting for solar gains in steady state whole building heat loss measurements

    Get PDF
    To ensure good thermal performance is delivered consistently and at scale, there is a need to measure and understand the as-built heat loss of dwellings. Co-heating is a steady state, linear regression method, used to measure whole building heat transfer coefficients. This paper assesses the uncertainties in such outdoor, in situ, measurements due to the presence and treatment of solar gains. Uncertainties relating to solar gains are explored through both a number of field test results and simulated co-heating tests. Results demonstrate the potential for fractions of solar gains received on one day to be re-emitted on subsequent days. This dynamic behaviour can lead the steady state analysis to underestimate heat loss. Furthermore, inappropriate measurements of on-site solar radiation are shown to lead to bias in heat loss measurements. In particular, horizontal on-site solar radiation measurements are shown to significantly overestimate heat loss in buildings experiencing high proportions of direct gains through vertical openings. Both forms of uncertainty are dependent upon both the environmental test conditions and the characteristics of a test dwelling. Highly glazed, low heat loss and heavyweight buildings prove to be the most susceptible to such uncertainties, which ultimately limit both when tests can be successfully performed and which buildings can be tested

    Forward Flux Sampling for rare event simulations

    Full text link
    Rare events are ubiquitous in many different fields, yet they are notoriously difficult to simulate because few, if any, events are observed in a conventiona l simulation run. Over the past several decades, specialised simulation methods have been developed to overcome this problem. We review one recently-developed class of such methods, known as Forward Flux Sampling. Forward Flux Sampling uses a series of interfaces between the initial and final states to calculate rate constants and generate transition paths, for rare events in equilibrium or nonequilibrium systems with stochastic dynamics. This review draws together a number of recent advances, summarizes several applications of the method and highlights challenges that remain to be overcome.Comment: minor typos in the manuscript. J.Phys.:Condensed Matter (accepted for publication
    corecore