14,482 research outputs found
Bilinear and quadratic Hamiltonians in two-mode cavity quantum electrodynamics
In this work we show how to engineer bilinear and quadratic Hamiltonians in
cavity quantum electrodynamics (QED) through the interaction of a single driven
two-level atom with cavity modes. The validity of the engineered Hamiltonians
is numerically analyzed even considering the effects of both dissipative
mechanisms, the cavity field and the atom. The present scheme can be used, in
both optical and microwave regimes, for quantum state preparation, the
implementation of quantum logical operations, and fundamental tests of quantum
theory.Comment: 11 pages, 3 figure
Significance of Ghost Orbit Bifurcations in Semiclassical Spectra
Gutzwiller's trace formula for the semiclassical density of states in a
chaotic system diverges near bifurcations of periodic orbits, where it must be
replaced with uniform approximations. It is well known that, when applying
these approximations, complex predecessors of orbits created in the bifurcation
("ghost orbits") can produce pronounced signatures in the semiclassical spectra
in the vicinity of the bifurcation. It is the purpose of this paper to
demonstrate that these ghost orbits themselves can undergo bifurcations,
resulting in complex, nongeneric bifurcation scenarios. We do so by studying an
example taken from the Diamagnetic Kepler Problem, viz. the period quadrupling
of the balloon orbit. By application of normal form theory we construct an
analytic description of the complete bifurcation scenario, which is then used
to calculate the pertinent uniform approximation. The ghost orbit bifurcation
turns out to produce signatures in the semiclassical spectrum in much the same
way as a bifurcation of real orbits would.Comment: 20 pages, 6 figures, LATEX (IOP style), submitted to J. Phys.
Frequency up- and down-conversions in two-mode cavity quantum electrodynamics
In this letter we present a scheme for the implementation of frequency up-
and down-conversion operations in two-mode cavity quantum electrodynamics
(QED). This protocol for engineering bilinear two-mode interactions could
enlarge perspectives for quantum information manipulation and also be employed
for fundamental tests of quantum theory in cavity QED. As an application we
show how to generate a two-mode squeezed state in cavity QED (the original
entangled state of Einstein-Podolsky-Rosen)
Nonadiabatic coherent evolution of two-level systems under spontaneous decay
In this paper we extend current perspectives in engineering reservoirs by
producing a time-dependent master equation leading to a nonstationary
superposition equilibrium state that can be nonadiabatically controlled by the
system-reservoir parameters. Working with an ion trapped inside a nonindeal
cavity we first engineer effective Hamiltonians that couple the electronic
states of the ion with the cavity mode. Subsequently, two classes of
decoherence-free evolution of the superposition of the ground and decaying
excited levels are achieved: those with time-dependent azimuthal or polar
angle. As an application, we generalise the purpose of an earlier study [Phys.
Rev. Lett. 96, 150403 (2006)], showing how to observe the geometric phases
acquired by the protected nonstationary states even under a nonadiabatic
evolution.Comment: 5 pages, no figure
Possibilidades de avanço do melhoramento genético de cupuaçuzeiro, com a seleção de novas progênies.
- …