26,259 research outputs found
On the propagation of semiclassical Wigner functions
We establish the difference between the propagation of semiclassical Wigner
functions and classical Liouville propagation. First we re-discuss the
semiclassical limit for the propagator of Wigner functions, which on its own
leads to their classical propagation. Then, via stationary phase evaluation of
the full integral evolution equation, using the semiclassical expressions of
Wigner functions, we provide the correct geometrical prescription for their
semiclassical propagation. This is determined by the classical trajectories of
the tips of the chords defined by the initial semiclassical Wigner function and
centered on their arguments, in contrast to the Liouville propagation which is
determined by the classical trajectories of the arguments themselves.Comment: 9 pages, 1 figure. To appear in J. Phys. A. This version matches the
one set to print and differs from the previous one (07 Nov 2001) by the
addition of two references, a few extra words of explanation and an augmented
figure captio
Uniform approximation for the overlap caustic of a quantum state with its translations
The semiclassical Wigner function for a Bohr-quantized energy eigenstate is
known to have a caustic along the corresponding classical closed phase space
curve in the case of a single degree of freedom. Its Fourier transform, the
semiclassical chord function, also has a caustic along the conjugate curve
defined as the locus of diameters, i.e. the maximal chords of the original
curve. If the latter is convex, so is its conjugate, resulting in a simple fold
caustic. The uniform approximation through this caustic, that is here derived,
describes the transition undergone by the overlap of the state with its
translation, from an oscillatory regime for small chords, to evanescent
overlaps, rising to a maximum near the caustic. The diameter-caustic for the
Wigner function is also treated.Comment: 14 pages, 9 figure
Quantization of multidimensional cat maps
In this work we study cat maps with many degrees of freedom. Classical cat
maps are classified using the Cayley parametrization of symplectic matrices and
the closely associated center and chord generating functions. Particular
attention is dedicated to loxodromic behavior, which is a new feature of
two-dimensional maps. The maps are then quantized using a recently developed
Weyl representation on the torus and the general condition on the Floquet
angles is derived for a particular map to be quantizable. The semiclassical
approximation is exact, regardless of the dimensionality or of the nature of
the fixed points.Comment: 33 pages, latex, 6 figures, Submitted to Nonlinearit
Theoretical investigation of moir\'e patterns in quantum images
Moir\'e patterns are produced when two periodic structures with different
spatial frequencies are superposed. The transmission of the resulting structure
gives rise to spatial beatings which are called moir\'e fringes. In classical
optics, the interest in moir\'e fringes comes from the fact that the spatial
beating given by the frequency difference gives information about details(high
spatial frequency) of a given spatial structure. We show that moir\'e fringes
can also arise in the spatial distribution of the coincidence count rate of
twin photons from the parametric down-conversion, when spatial structures with
different frequencies are placed in the path of each one of the twin beams. In
other words,we demonstrate how moir\'e fringes can arise from quantum images
Experimental quantum computing without entanglement
Entanglement is widely believed to lie at the heart of the advantages offered
by a quantum computer. This belief is supported by the discovery that a
noiseless (pure) state quantum computer must generate a large amount of
entanglement in order to offer any speed up over a classical computer. However,
deterministic quantum computation with one pure qubit (DQC1), which employs
noisy (mixed) states, is an efficient model that generates at most a marginal
amount of entanglement. Although this model cannot implement any arbitrary
algorithm it can efficiently solve a range of problems of significant
importance to the scientific community. Here we experimentally implement a
first-order case of a key DQC1 algorithm and explicitly characterise the
non-classical correlations generated. Our results show that while there is no
entanglement the algorithm does give rise to other non-classical correlations,
which we quantify using the quantum discord - a stronger measure of
non-classical correlations that includes entanglement as a subset. Our results
suggest that discord could replace entanglement as a necessary resource for a
quantum computational speed-up. Furthermore, DQC1 is far less resource
intensive than universal quantum computing and our implementation in a scalable
architecture highlights the model as a practical short-term goal.Comment: 5 pages, 4 figure
This Gulf of Fire: The Destruction of Lisbon, or Apocalypse in the Age of Science and Reason
info:eu-repo/semantics/acceptedVersio
Desigualdades territoriales: despoblación y polÃticas de desarrollo local en el mundo rural Portugués
The Portuguese rural world no longer resembles the one described in the literature,
mostly because people no longer live or work there. Farmers became brand managers and tour hosts, workers were replaced by machines and intensive farming shoved entire populations to urban areas. With depopulation, the agrarian landscape has been transformed into a place for leisure or nature preservation. How are the remains of the rural being addressed by the few who still believe in life outside the big cities? What is the role of local government and its leaders in the sustainable development of the territory and its dynamic? All over the country, and particularly in rural areas, there is an urgent need to attract people and investment to fight depopulation and unemployment. What are the differences between projects for urban and rural municipalities? Political and economic strategies of municipalities and private entrepreneurs are analyzed and compared.info:eu-repo/semantics/publishedVersio
Neutral heavy lepton production at next high energy linear colliders
The discovery potential for detecting new heavy Majorana and Dirac neutrinos
at some recently proposed high energy colliders is discussed. These
new particles are suggested by grand unified theories and superstring-inspired
models. For these models the production of a single heavy neutrino is shown to
be more relevant than pair production when comparing cross sections and
neutrino mass ranges.
The process is calculated
including on-shell and off-shell heavy neutrino effects.
We present a detailed study of cross sections and distributions that shows a
clear separation between the signal and standard model contributions, even
after including hadronization effects.Comment: 4 pages including 15 figures, 1 table. RevTex. Accepted in Physical
Review
- …