27,172 research outputs found

    Critical Behavior of a Three-State Potts Model on a Voronoi Lattice

    Full text link
    We use the single-histogram technique to study the critical behavior of the three-state Potts model on a (random) Voronoi-Delaunay lattice with size ranging from 250 to 8000 sites. We consider the effect of an exponential decay of the interactions with the distance,J(r)=J0exp(ar)J(r)=J_0\exp(-ar), with a>0a>0, and observe that this system seems to have critical exponents γ\gamma and ν\nu which are different from the respective exponents of the three-state Potts model on a regular square lattice. However, the ratio γ/ν\gamma/\nu remains essentially the same. We find numerical evidences (although not conclusive, due to the small range of system size) that the specific heat on this random system behaves as a power-law for a=0a=0 and as a logarithmic divergence for a=0.5a=0.5 and a=1.0a=1.0Comment: 3 pages, 5 figure

    DMRG study of the Bond Alternating \textbf{S}=1/2 Heisenberg ladder with Ferro-Antiferromagnetic couplings

    Full text link
    We obtain the phase diagram in the parameter space (J/J,γ)(J'/J, \gamma) and an accurate estimate of the critical line separating the different phases. We show several measuments of the magnetization, dimerization, nearest neighbours correlation, and density of energy in the different zones of the phase diagram, as well as a measurement of the string order parameter proposed as the non vanishing phase order parameter characterizing Haldane phases. All these results will be compared in the limit J/J1J'/J\gg 1 with the behaviour of the S=1\textbf{S}=1 Bond Alternated Heisenberg Chain (BAHC). The analysis of our data supports the existence of a dimer phase separated by a critical line from a Haldane one, which has exactly the same nature as the Haldane phase in the S=1\textbf{S}=1 BAHC.Comment: Version 4. 8 pages, 15 figures (12 figures in document

    On the propagation of semiclassical Wigner functions

    Full text link
    We establish the difference between the propagation of semiclassical Wigner functions and classical Liouville propagation. First we re-discuss the semiclassical limit for the propagator of Wigner functions, which on its own leads to their classical propagation. Then, via stationary phase evaluation of the full integral evolution equation, using the semiclassical expressions of Wigner functions, we provide the correct geometrical prescription for their semiclassical propagation. This is determined by the classical trajectories of the tips of the chords defined by the initial semiclassical Wigner function and centered on their arguments, in contrast to the Liouville propagation which is determined by the classical trajectories of the arguments themselves.Comment: 9 pages, 1 figure. To appear in J. Phys. A. This version matches the one set to print and differs from the previous one (07 Nov 2001) by the addition of two references, a few extra words of explanation and an augmented figure captio

    Uniform approximation for the overlap caustic of a quantum state with its translations

    Full text link
    The semiclassical Wigner function for a Bohr-quantized energy eigenstate is known to have a caustic along the corresponding classical closed phase space curve in the case of a single degree of freedom. Its Fourier transform, the semiclassical chord function, also has a caustic along the conjugate curve defined as the locus of diameters, i.e. the maximal chords of the original curve. If the latter is convex, so is its conjugate, resulting in a simple fold caustic. The uniform approximation through this caustic, that is here derived, describes the transition undergone by the overlap of the state with its translation, from an oscillatory regime for small chords, to evanescent overlaps, rising to a maximum near the caustic. The diameter-caustic for the Wigner function is also treated.Comment: 14 pages, 9 figure
    corecore