3 research outputs found

    Naturally Occurring Variants of the Dysglycemic Peptide Pancreastatin DIFFERENTIAL POTENCIES FOR MULTIPLE CELLULAR FUNCTIONS AND STRUCTURE-FUNCTION CORRELATION

    No full text
    Pancreastatin (PST), a chromogranin A-derived peptide, is a potent physiological inhibitor of glucose-induced insulin secretion. PST also triggers glycogenolysis in liver and reduces glucose uptake in adipocytes and hepatocytes. Here, we probed for genetic variations in PST sequence and identified two variants within its functionally important carboxyl terminus domain: E287K and G297S. To understand functional implications of these amino acid substitutions, we tested the effects of wild-type (PST-WT), PST-287K, and PST-297S peptides on various cellular processes/events. The rank order of efficacy to inhibit insulin-stimulated glucose uptake was: PST-297S > PST-287K > PST-WT. The PST peptides also displayed the same order of efficacy for enhancing intracellular nitric oxide and Ca2+ levels in various cell types. In addition, PST peptides activated gluconeogenic genes in the following order: PST-297S approximate to PST-287K > PST-WT. Consistent with these in vitro results, the common PST variant allele Ser-297 was associated with significantly higher (by approximate to 17 mg/dl, as compared with the wild-type Gly-297 allele) plasma glucose level in our study population (n = 410). Molecular modeling and molecular dynamics simulations predicted the following rank order of -helical content: PST-297S > PST-287K > PST-WT. Corroboratively, circular dichroism analysis of PST peptides revealed significant differences in global structures (e.g. the order of propensity to form -helix was: PST-297S approximate to PST-287K > PST-WT). This study provides a molecular basis for enhanced potencies/efficacies of human PST variants (likely to occur in approximate to 300 million people worldwide) and has quantitative implications for inter-individual variations in glucose/insulin homeostasis

    Molecular interactions of the physiological anti-hypertensive peptide catestatin with the neuronal nicotinic acetylcholine receptor

    No full text
    Catestatin (CST), a chromogranin-A-derived peptide, is a potent endogenous inhibitor of the neuronal nicotinic acetylcholine receptor (nAChR). It exerts an anti-hypertensive effect by acting as a 'physiological brake' on transmitter release into the circulation. However, the mechanism of interaction of CST with nAChR is only partially understood. To unravel molecular interactions of the wild-type human CST (CST-WT) as well as its naturally occurring variants (CST-364S and CST-370L, which have Gly -> Ser and Pro -> Leu substitutions, respectively) with the human alpha 3 beta 4 nAChR, we generated a homology-modeled human alpha 3 beta 4 nAChR structure and solution structures of CST peptides. Docking and molecular dynamics simulations showed that similar to 90% of interacting residues were within 15 N-terminal residues of CST peptides. The rank order of binding affinity of these peptides with nAChR was: CST-370L > CST-WT > CST-364S; the extent of occlusion of the receptor pore by these peptides was also in the same order. In corroboration with computational predictions, circular dichroism analysis revealed significant differences in global structures of CST peptides (e. g. the order of alpha-helical content was: CST-370L > CST-WT > CST-364S). Consistently, CST peptides blocked various stages of nAChR signal transduction, such as nicotine-or acetylcholine-evoked inward current, rise in intracellular Ca2+ and catecholamine secretion in or from neuron-differentiated PC12 cells, in the same rank order. Taken together, this study shows molecular interactions between human CST peptides and human alpha 3 beta 4 nAChR, and demonstrates that alterations in the CST secondary structure lead to the gain of potency for CST-370L and loss of potency for CST-364S. These findings have implications for understanding the nicotinic cholinergic signaling in humans

    Functional Genetic Variants of the Catecholamine-Release-Inhibitory Peptide Catestatin in an Indian Population ALLELE-SPECIFIC EFFECTS ON METABOLIC TRAITS

    No full text
    Catestatin (CST), a chromogranin A (CHGA)-derived peptide, is a potent inhibitor of catecholamine release from adrenal chromaffin cells and postganglionic sympathetic axons. We re-sequenced the CST region of CHGA in an Indian population (n = 1010) and detected two amino acid substitution variants: G364S and G367V. Synthesized CST variant peptides (viz. CST-Ser-364 and CST-Val-367) were significantly less potent than the wild type peptide (CST-WT) to inhibit nicotine-stimulated catecholamine secretion from PC12 cells. Consistently, the rank-order of blockade of nicotinic acetylcholine receptor (nAChR)-stimulated inward current and intracellular Ca2+ rise by these peptides in PC12 cells was: CST-WT > CST-Ser-364 > CST-Val-367. Structural analysis by CD spectroscopy coupled with molecular dynamics simulations revealed the following order of alpha-helical content: CST-WT > CST-Ser-364 > CST-Val-367; docking of CST peptides onto a major human nAChR subtype and molecular dynamics simulations also predicted the above rank order for their binding affinity with nAChR and the extent of occlusion of the receptor pore, providing a mechanistic basis for differential potencies. The G364S polymorphism was in strong linkage disequilibrium with several common CHGA genetic variations. Interestingly, the Ser-364 allele (detected in similar to 15% subjects) was strongly associated with profound reduction (up to similar to 2.1-fold) in plasma norepinephrine/epinephrine levels consistent with the diminished nAChR desensitization-blocking effect of CST-Ser-364 as compared with CST-WT. Additionally, the Ser-364 allele showed strong associations with elevated levels of plasma triglyceride and glucose levels. In conclusion, a common CHGA variant in an Indian population influences several biochemical parameters relevant to cardiovascular/metabolic disorders
    corecore