20 research outputs found

    TEAR AND TENSILE STRENGTH OF 100% COTTON WOVEN FABRICS’ BASIC STRUCTURES: REGRESSION MODELLING

    Get PDF
    This research paper aims to estimate the tear and tensile strength of woven fabrics while considering a number of construction factors. Construction variables include ends per cm (EPCm), picks per cm (PPCm), an overall configuration of yarn, and fabric’s areal density or grams per square meter (GSM). While the statistical relationship in deciding the fabric strength is very complicated considering all variables, the correlation-regression model is used to explain the influence of structural parameters on the tear and tensile strength of various fundamental fabrics’ designs. With different thread densities varying reed counts, and heald count using 100 percent cotton yarn having 36.9 tex, eight different designs of plain, twill, and sateen are prepared for the study. Four regression models, built to predict the tear and tensile strength of the sample woven fabrics, are vital components of this research. It is noticed that the setting of yarn affects the tensile strength of the fabrics, and the fabric pattern determines the tear strength of the fabrics. For higher tear strength, matt weave, and tensile strength, a twill structure is desired within this scope of the fabric structures

    Performance Evaluation of PLA Based Biocomposites Reinforced with Photografted PALF

    Get PDF
    In this study, biocomposites were fabricated through a compression moulding technique that used untreated and grafted pineapple leaf fibre separately with polylactic acid (PLA) as a matrix. For grafting, pineapple leaf fibre (PALF) was chemically modified using two different monomers, i.e. 2-hydroxyethyl methacrylate (HEMA) and methyl methacrylate (MMA) solutions, in the presence of methanol (MeOH) and photoinitiator (Darocur-1664) under ultraviolet (UV) radiation with the aim of improving thermo-mechanical characteristics. Based on grafting efficiency and mechanical attributes, the intensity of UV radiation and monomer concentration were maximized. A series of solutions, created by varying the concentrations (10‒60%) of monomers in MeOH along with 2% photoinitiator, were prepared. Experimental results revealed that composites made of PALF grafted with 30% HEMA at the 15th pass and 40% MMA at the 20th pass of UV radiation achieved the optimum mechanical properties compared with an untreated PALF/PLA composite. The optimized solutions were further enhanced by adding various concentrations (0.5‒1.5%) of urea, with the best mechanical features achieved using a 1% concentration of urea. The chemical bonds formed due to photografting were viewed using Fourier transform infrared spectroscopy (FTIR). Degradation behaviour under heat was determined through thermogravimetric analysis, which found that photografted PALF/PLA showed significantly better thermal stability than the untreated composite sample. A water uptake test showed that grafting reduced the water retention capacity of the treated composite significantly. Crystallization characteristics were inspected using a differential scanning calorimeter, which showed that grafted PALF had a substantial effect on the degree of crystallization of PLA. In addition, scanning electron microscopy was used to monitor the interfacial bond, and revealed that interfacial adhesion was enhanced by the incorporation of photografted PALF into the matrix

    Nonwoven Flax Fibre Reinforced PLA Biocomposites

    No full text

    Physico-mechanical, thermal and biodegradation performance of random flax/polylactic acid and unidirectional flax/polylactic acid biocomposites

    No full text
    Fully biodegradable flax/polylactic acid (PLA) thermoplastic composites were fabricated by using random (nonwoven mat) and aligned (unidirectional yarn) flax fiber as reinforcements (39% flax by volume) and Polylactic acid (PLA) as matrix. Results revealed that the aligned flax fibers have a greater reinforcing effect due to the uniform distribution of load axially along the fiber length in the composite. The aligned flax/PLA and random flax/PLA showed the tensile strength of (83.0 ± 5.0) and (151.0 ± 7.0) MPa respectively and flexural strength of (130.0 ± 5.0) and (215.0 ± 7.2) MPa respectively. Young’s modulus of (9.3 ± 1.5) and (18.5 ± 2.0) GPa and flexural modulus of (9.9 ± 1.0) and (18.8 ± 1.0) GPa was attained for the random and unidirectional fiber composites, respectively. It was also found that both composite constituents, fiber and matrix, were degradable if buried in compost soil (ready soil after composting process), which is a distinctive advantage of the new composite structures. Remarkably, the biodegradation property of aligned flax fiber composites was significantly lower than random mat composites, possibly due to the less water swelling behavior of the aligned fiber composites. After 120 days burial test, the aligned flax/PLA composite displayed the reduction of 19% mass, residual flexural strength and modulus decreased by 57 and 50% respectively, while the random mat composites exhibited the loss of 27% mass, residual flexural strength and modulus declined by 80% at the same period.</jats:p

    Impact Property of PLA/Flax Nonwoven Biocomposite

    No full text
    Flax fibre reinforced polylactic acid (PLA) biocomposites were fabricated by using a new technique incorporating an air-laying nonwoven web forming process and compression moulding technologies. The relationship between the main process variables and the properties of the biocomposite was investigated. The results show that with the increasing of flax content, the notched Izod impact strength increased. The maximum value of 28.3 KJ/m2 was achieved at 60% flax fibre content. As the moulding temperature and moulding time increased, the impact strength decreased. The physical properties of the biocomposites were also evaluated. As the flax fibre content increased, the void content of the biocomposites increased. This was further confirmed by the surface morphology of the composite material. The appropriate processing parameters for the biocomposites were established
    corecore