272 research outputs found

    Photon polarization in radiative B decays

    Full text link
    We study decay distributions in B -> K pi pi gamma, combining contributions from several overlapping resonances in a K pi pi mass range near 1400 MeV, (1^+) K_1(1400), (2^+) K^*_2(1430) and (1^-) K^*(1410). A method is proposed for using these distributions to determine a photon polarization parameter in the effective radiative weak Hamiltonian. This parameter is measured through an up-down asymmetry of the photon direction relative to the K pi pi decay plane. We calculate a dominant up-down asymmetry of 0.33 +- 0.05 from the K1(1400) resonance, which can be measured with about 10^8 B B-bar pairs, thus providing a new test for the Standard Model and a probe for some of its extensions.Comment: 22 pages, 3 figures, version to appear in Phys. Rev.

    Batteryless PV desalination system for rural areas: A case study

    Get PDF
    The use of photovoltaics (PVs) to power reverse osmosis (RO) desalination can potentially break the dependence of this desalination process on conventional energy sources (oil, coal, electricity from national grid), reduce operational costs, and improve environmental sustainability. In this paper, a methodology for the optimal sizing and performance evaluation of a stand-alone PV system to power an RO desalination unit is presented. This unit covers the water needs of inhabitants of a small isolated village called Mrair-Gabis, near the Ajdabiya city in north-eastern Libya. A photovoltaic-reverse osmosis (PV-RO) system offers good possibilities for satisfying this need. Due to the many technical problems with batteries, as well as their high cost, the system studied in this paper will not consider the use of batteries; the viability of a batterryless system is facilitated by the high solar radiation at the selected site, and long daily average insolation duration. From the water consumption records it was noticed that during some days in summer the water produced by the RO unit does not meet the water demand; on the other hand, during some days of the month there will be an excess of water production. The above considerations led to the design of a freshwater tank, to cover the potable water needs for people in cases of the desalination unit breaking down, either due to technical problems or on the cloudy days. The purpose of the water tank is therefore to store excess water when production exceeds supply. Simulations were carried out using MATLAB Software to size and assess the performance of a stand-alone PV system. The computer program can be applied to any site with different weather conditions

    Batteryless PV desalination system for rural areas: A case study

    Get PDF
    The use of photovoltaics (PVs) to power reverse osmosis (RO) desalination can potentially break the dependence of this desalination process on conventional energy sources (oil, coal, electricity from national grid), reduce operational costs, and improve environmental sustainability. In this paper, a methodology for the optimal sizing and performance evaluation of a stand-alone PV system to power an RO desalination unit is presented. This unit covers the water needs of inhabitants of a small isolated village called Mrair-Gabis, near the Ajdabiya city in north-eastern Libya. A photovoltaic-reverse osmosis (PV-RO) system offers good possibilities for satisfying this need. Due to the many technical problems with batteries, as well as their high cost, the system studied in this paper will not consider the use of batteries; the viability of a batterryless system is facilitated by the high solar radiation at the selected site, and long daily average insolation duration. From the water consumption records it was noticed that during some days in summer the water produced by the RO unit does not meet the water demand; on the other hand, during some days of the month there will be an excess of water production. The above considerations led to the design of a freshwater tank, to cover the potable water needs for people in cases of the desalination unit breaking down, either due to technical problems or on the cloudy days. The purpose of the water tank is therefore to store excess water when production exceeds supply. Simulations were carried out using MATLAB Software to size and assess the performance of a stand-alone PV system. The computer program can be applied to any site with different weather conditions

    Radiative and Semileptonic B Decays Involving Higher K-Resonances in the Final States

    Full text link
    We study the radiative and semileptonic B decays involving a spin-JJ resonant KJ()K_J^{(*)} with parity (1)J(-1)^J for KJK_J^* and (1)J+1(-1)^{J+1} for KJK_J in the final state. Using the large energy effective theory (LEET) techniques, we formulate BKJ()B \to K_J^{(*)} transition form factors in the large recoil region in terms of two independent LEET functions ζKJ()\zeta_\perp^{K_J^{(*)}} and ζKJ()\zeta_\parallel^{K_J^{(*)}}, the values of which at zero momentum transfer are estimated in the BSW model. According to the QCD counting rules, ζ,KJ()\zeta_{\perp,\parallel}^{K_J^{(*)}} exhibit a dipole dependence in q2q^2. We predict the decay rates for BKJ()γB \to K_J^{(*)} \gamma, BKJ()+B \to K_J^{(*)} \ell^+ \ell^- and BKJ()ννˉB \to K_J^{(*)}\nu \bar{\nu}. The branching fractions for these decays with higher KK-resonances in the final state are suppressed due to the smaller phase spaces and the smaller values of ζ,KJ()\zeta^{K_J^{(*)}}_{\perp,\parallel}. Furthermore, if the spin of KJ()K_J^{(*)} becomes larger, the branching fractions will be further suppressed due to the smaller Clebsch-Gordan coefficients defined by the polarization tensors of the KJ()K_J^{(*)}. We also calculate the forward backward asymmetry of the BKJ()+B \to K_J^{(*)} \ell^+ \ell^- decay, for which the zero is highly insensitive to the KK-resonances in the LEET parametrization.Comment: 27 pages, 4 figures, 7 tables;contents and figures corrected, title and references revise

    Magnetic Barriers and their q95 dependence at DIII-D

    Full text link
    It is well known that externally generated resonant magnetic perturbations (RMPs) can form islands in the plasma edge. In turn, large overlapping islands generate stochastic fields, which are believed to play a role in the avoidance and suppression of edge localized modes (ELMs) at DIII-D. However, large coalescing islands can also generate, in the middle of these stochastic regions, KAM surfaces effectively acting as "barriers" against field-line dispersion and, indirectly, particle diffusion. It was predicted in [H. Ali and A. Punjabi, Plasma Phys. Control. Fusion 49 (2007), 1565-1582] that such magnetic barriers can form in piecewise analytic DIII-D plasma equilibria. In the present work, the formation of magnetic barriers at DIII-D is corroborated by field-line tracing calculations using experimentally constrained EFIT [L. Lao, et al., Nucl. Fusion 25, 1611 (1985)] DIII-D equilibria perturbed to include the vacuum field from the internal coils utilized in the experiments. According to these calculations, the occurrence and location of magnetic barriers depends on the edge safety factor q95. It was thus suggested that magnetic barriers might contribute to narrowing the edge stochastic layer and play an indirect role in the RMPs failing to control ELMs for certain values of q95. The analysis of DIII-D discharges where q95 was varied, however, does not show anti-correlation between barrier formation and ELM suppression

    Soft end-point and mass corrections to the eta' g*g* vertex function

    Full text link
    Power-suppressed corrections arising from end-point integration regions to the space-like vertex function of the massive eta'-meson virtual gluon transition eta' - g*g* are computed. Calculations are performed within the standard hard-scattering approach (HSA) and the running coupling method supplemented by the infrared renormalon calculus. Contributions to the vertex function from the quark and gluon contents of the eta' -meson are taken into account and the Borel resummed expressions for F_{eta' g*g*}(Q2,\omega ,\eta), as well as for F_{eta' g g*}}(Q^{2},\omega =\pm 1,\eta) and F_{eta' g*g*}(Q^{2},\omega =0,\eta) are obtained. It is demonstrated that the power-suppressed corrections \sim (\Lambda ^{2}/Q^{2})^{n}, in the explored range of the total gluon virtuality 1 <Q2 < 25 GeV2, considerably enhance the vertex function relative to the results found in the framework of the standard HSA with a fixed coupling. Modifications generated by the eta ' -meson mass effects are discussed

    Radiative B decays to the axial KK mesons at next-to-leading order

    Full text link
    We calculate the branching ratios of BK1γB\to K_1\gamma at next-to-leading order (NLO) of αs\alpha_s where K1K_1 is the orbitally excited axial vector meson. The NLO decay amplitude is divided into the vertex correction and the hard spectator interaction part. The one is proportional to the weak form factor of BK1B\to K_1 transition while the other is a convolution between light-cone distribution amplitudes and hard scattering kernel. Using the light-cone sum rule results for the form factor, we have \calB(B^0\to K_1^0(1270)\gamma)=(0.828\pm0.335)\times 10^{-5} and \calB(B^0\to K_1^0(1400)\gamma)=(0.393\pm0.151)\times 10^{-5}.Comment: 17pages, 4 figures. Minor changes, typos corrected. PRD accepted versio

    Possible Supersymmetric Effects on Angular Distributions in BK(Kπ)+B \to K^* (\to K \pi) \ell^+ \ell^- Decays

    Full text link
    We investigate the angular distributions of the rare B decay, BK(Kπ)+B \to K^* (\to K \pi) \ell^+ \ell^-, in general supersymmetric extensions of the standard model. We consider the new physics contributions from the operators O7,8,9,10O_{7,8,9,10} in small invariant mass region of lepton pair. We show that the azimuthal angle distribution of the decay can tell us the new physics effects clearly from the behavior of the distribution, even if new physics does not change the decay rate substantially from the standard model prediction

    Calculation of two-loop virtual corrections to b --> s l+ l- in the standard model

    Get PDF
    We present in detail the calculation of the virtual O(alpha_s) corrections to the inclusive semi-leptonic rare decay b --> s l+ l-. We also include those O(alpha_s) bremsstrahlung contributions which cancel the infrared and mass singularities showing up in the virtual corrections. In order to avoid large resonant contributions, we restrict the invariant mass squared s of the lepton pair to the range 0.05 < s/mb^2 < 0.25. The analytic results are represented as expansions in the small parameters s/mb^2, z = mc^2/mb^2 and s/(4 mc^2). The new contributions drastically reduce the renormalization scale dependence of the decay spectrum. For the corresponding branching ratio (restricted to the above s-range) the renormalization scale uncertainty gets reduced from +/-13% to +/-6.5%.Comment: 41 pages including 9 postscript figures; in version 2 some typos and inconsistent notation correcte

    Semi-inclusive B Decays and Direct CP Violation in QCD Factorization

    Get PDF
    We have systematically investigated the semi-inclusive B decays B->MX, which are manifestations of the quark decay b->Mq, within the framework of QCD-improved factorization. These decays are theoretically clean and have distinctive experimental signatures. We focus on a class of these that do not require any form factor information and therefore may be especially suitable for extracting information on the angles α\alpha and γ\gamma of the unitarity triangle. The nonfactorizable effects, such as vertex-type and penguin-type corrections to the two-body b decay and hard spectator corrections to the 3-body decay are calculable in the heavy quark limit. QCD factorization is applicable when the emitted meson is a light meson or a charmonium. We discuss the issue of the CPT constraint on partial rate asymmetries. The strong phase coming from final-state rescattering due to hard gluon exchange between the final states can induce large rate asymmetries for tree-dominated color-suppressed modes (π0,ρ0,ω)Xsˉ(\pi^0,\rho^0,\omega)X_{\bar s}. The nonfactorizable hard spectator interactions in the 3-body decay, though phase-space suppressed, are extremely important for the tree-dominated modes (π0,ρ0,ω)Xsˉ,ϕX(\pi^0,\rho^0,\omega)X_{\bar s}, \phi X, JXs,JXJ X_s,J X and the penguin-dominated mode ωXssˉ\omega X_{s\bar s}. In fact, they are dominated by the hard spectator corrections. Our result for B(BJ/ψXs){\cal B} (B\to J/\psi X_s) is in agreement with experiment. The semi-inclusive decay modes: Bs0(π0,ρ0,ω)XsˉB^0_s\to (\pi^0,\rho^0,\omega)X_{\bar s}, ρ0Xssˉ\rho^0X_{s\bar s}, B0(KX,KX)B^0\to(K^-X,K^{*-}X) and B(K0Xs,K0Xs)B^-\to (K^0X_s,K^{*0}X_s) are the most promising ones in searching for direct CP violation. In fact, they have branching ratios of order 10610410^{-6}-10^{-4} and CP rate asymmetries of order (1040)(10-40)%.Comment: 28 page
    corecore