1,979 research outputs found
Pisces IV submersible observations in the epicentral region of the 1929 Grand Banks earthquake
The PISCES IVsubmersible was used to investigate the upper continental slope around 44 ON, 56 W, near the epicentre of the 1929 Grand Banks earthquake. Four dives in water depths of 800-2000 m were undertaken to observe speci3c features identijied with the SeaMARC I sidescan system in 1983. Two dives were made in the head of Eastern Valley where pebbly mudstones ofprobable Pleistocene age were recognized outcropping on the seafloor. Constructional features of cobbles and boulders, derived by exhumation and reworking of the pebbly mudstone, were also observed. These include gravel/sand bedforms (transverse waves) on the valley floor. Slope failure features in semiconsolidated mudstone were recognized on two dives onto the St. Pierre slope. Exposures in these mudstones are rapidly eroded by intense burrowing by benthic organisms
Evolution of Labrador Sea–Baffin Bay: Plate or Plume Processes?
Breakup between Greenland and Canada resulted in oceanic spreading in the Labrador Sea and Baffin Bay. These ocean basins are connected through the Davis Strait, a bathymetric high comprising primarily continental lithosphere, and the focus of the West Greenland Tertiary volcanic province. It has been suggested that a mantle plume facilitated this breakup and generated the associated magmatism. Plume-driven breakup predicts that the earliest, most extensive rifting, magmatism and initial seafloor spreading starts in the same locality, where the postulated plume impinged. Observations from the Labrador Sea–Baffin Bay area do not accord with these predictions. Thus, the plume hypothesis is not confirmed at this locality unless major ad hoc variants are accepted. A model that fits the observations better involves a thick continental lithospheric keel of orogenic origin beneath the Davis Strait that blocked the northward-propagating Labrador Sea rift resulting in locally enhanced magmatism. The Davis Strait lithosphere was thicker and more resilient to rifting because the adjacent Paleoproterozoic Nagssugtoqidian and Torngat orogenic belts contain structures unfavourably orientated with respect to the extensional stress field at the time
NEUTRON LOSSES TO Pa IN THE AQUEOUS HOMOGENEOUS BREEDER REACTOR
Neutron losses to Pa/sup 2//sup 3//sup 3/ in the blanket of the AHBR were computed and compared for two cases: (1) concentration of Pa/sup 2//sup 3// sup 3/ is maintained uniform by continuous mixing, and (2) batches of fertile material are shifted periodically from high- to low-flux regions of blanket. It was found that, if the fertile material is cycled through three radial positions in three days, the loss of neutrons to Pa/sup 2//sup 3//sup 3/ is no more than one per cent greater than if it is mixed continuously. (auth
Homogeneous links, Seifert surfaces, digraphs and the reduced Alexander polynomial
We give a geometric proof of the following result of Juhasz. \emph{Let
be the leading coefficient of the Alexander polynomial of an alternating knot
. If then has a unique minimal genus Seifert surface.} In
doing so, we are able to generalise the result, replacing `minimal genus' with
`incompressible' and `alternating' with `homogeneous'. We also examine the
implications of our proof for alternating links in general.Comment: 37 pages, 28 figures; v2 Main results generalised from alternating
links to homogeneous links. Title change
A stable FSI algorithm for light rigid bodies in compressible flow
In this article we describe a stable partitioned algorithm that overcomes the
added mass instability arising in fluid-structure interactions of light rigid
bodies and inviscid compressible flow. The new algorithm is stable even for
bodies with zero mass and zero moments of inertia. The approach is based on a
local characteristic projection of the force on the rigid body and is a natural
extension of the recently developed algorithm for coupling compressible flow
and deformable bodies. Normal mode analysis is used to prove the stability of
the approximation for a one-dimensional model problem and numerical
computations confirm these results. In multiple space dimensions the approach
naturally reveals the form of the added mass tensors in the equations governing
the motion of the rigid body. These tensors, which depend on certain surface
integrals of the fluid impedance, couple the translational and angular
velocities of the body. Numerical results in two space dimensions, based on the
use of moving overlapping grids and adaptive mesh refinement, demonstrate the
behavior and efficacy of the new scheme. These results include the simulation
of the difficult problem of a shock impacting an ellipse of zero mass.Comment: 32 pages, 20 figure
Layering in the Ising model
We consider the three-dimensional Ising model in a half-space with a boundary
field (no bulk field). We compute the low-temperature expansion of layering
transition lines
Dynamical System Approach to Cosmological Models with a Varying Speed of Light
Methods of dynamical systems have been used to study homogeneous and
isotropic cosmological models with a varying speed of light (VSL). We propose
two methods of reduction of dynamics to the form of planar Hamiltonian
dynamical systems for models with a time dependent equation of state. The
solutions are analyzed on two-dimensional phase space in the variables where is a function of a scale factor . Then we show how the
horizon problem may be solved on some evolutional paths. It is shown that the
models with negative curvature overcome the horizon and flatness problems. The
presented method of reduction can be adopted to the analysis of dynamics of the
universe with the general form of the equation of state .
This is demonstrated using as an example the dynamics of VSL models filled with
a non-interacting fluid. We demonstrate a new type of evolution near the
initial singularity caused by a varying speed of light. The singularity-free
oscillating universes are also admitted for positive cosmological constant. We
consider a quantum VSL FRW closed model with radiation and show that the
highest tunnelling rate occurs for a constant velocity of light if and . It is also proved that the considered class of
models is structurally unstable for the case of .Comment: 18 pages, 5 figures, RevTeX4; final version to appear in PR
Combinatorial Alexander Duality -- a Short and Elementary Proof
Let X be a simplicial complex with the ground set V. Define its Alexander
dual as a simplicial complex X* = {A \subset V: V \setminus A \notin X}. The
combinatorial Alexander duality states that the i-th reduced homology group of
X is isomorphic to the (|V|-i-3)-th reduced cohomology group of X* (over a
given commutative ring R). We give a self-contained proof.Comment: 7 pages, 2 figure; v3: the sign function was simplifie
A scalar-tensor cosmological model with dynamical light velocity
The dynamical consequences of a bimetric scalar-tensor theory of gravity with
a dynamical light speed are investigated in a cosmological setting. The model
consists of a minimally-coupled self-gravitating scalar field coupled to
ordinary matter fields in the standard way through the metric:
\metric_{\mu\nu}+B\partial_\mu\phi\partial_\nu\phi. We show that in a
universe with matter that has a radiation-dominated equation of state, the
model allows solutions with a de Sitter phase that provides sufficient
inflation to solve the horizon and flatness problems. This behaviour is
achieved without the addition of a potential for the scalar field, and is shown
to be largely independent of its introduction. We therefore have a model that
is fundamentally different than the potential-dominated, slowly-rolling scalar
field of the standard models inflationary cosmology. The speed of gravitational
wave propagation is predicted to be significantly different from the speed of
matter waves and photon propagation in the early universe.Comment: 12 pages, uses amsart and amssymb. Minor corrections, to appear in
Phys. Lett.
Absence of self-averaging in the complex admittance for transport through random media
A random walk model in a one dimensional disordered medium with an
oscillatory input current is presented as a generic model of boundary
perturbation methods to investigate properties of a transport process in a
disordered medium. It is rigorously shown that an admittance which is equal to
the Fourier-Laplace transform of the first-passage time distribution is
non-self-averaging when the disorder is strong. The low frequency behavior of
the disorder-averaged admittance, where , does not coincide with the low frequency behavior of the admittance for any
sample, . It implies that the Cole-Cole plot of
appears at a different position from the Cole-Cole plots of of any
sample. These results are confirmed by Monte-Carlo simulations.Comment: 7 pages, 2 figures, published in Phys. Rev.
- …