481 research outputs found

    de Sitter relativity: a natural scenario for an evolving Lambda

    Full text link
    The dispersion relation of de Sitter special relativity is obtained in a simple and compact form, which is formally similar to the dispersion relation of ordinary special relativity. It is manifestly invariant under change of scale of mass, energy and momentum, and can thus be applied at any energy scale. When applied to the universe as a whole, the de Sitter special relativity is found to provide a natural scenario for the existence of an evolving cosmological term, and agrees in particular with the present-day observed value. It is furthermore consistent with a conformal cyclic view of the universe, in which the transition between two consecutive eras occurs through a conformal invariant spacetime.Comment: V1: 11 pages. V2: Presentation changes, new discussion added, 13 page

    de Sitter geodesics: reappraising the notion of motion

    Full text link
    The de Sitter spacetime is transitive under a combination of translations and proper conformal transformations. Its usual family of geodesics, however, does not take into account this property. As a consequence, there are points in de Sitter spacetime which cannot be joined to each other by any one of these geodesics. By taking into account the appropriate transitivity properties in the variational principle, a new family of maximizing trajectories is obtained, whose members are able to connect any two points of the de Sitter spacetime. These geodesics introduce a new notion of motion, given by a combination of translations and proper conformal transformations, which may possibly become important at very-high energies, where conformal symmetry plays a significant role.Comment: 9 pages. V2: Presentation changes aiming at clarifying the text; version accepted for publication in Gen. Rel. Gra

    Gravitomagnetic Moments of the Fundamental Fields

    Full text link
    The quadratic form of the Dirac equation in a Riemann spacetime yields a gravitational gyromagnetic ratio \kappa_S = 2 for the interaction of a Dirac spinor with curvature. A gravitational gyromagnetic ratio \kappa_S = 1 is also found for the interaction of a vector field with curvature. It is shown that the Dirac equation in a curved background can be obtained as the square--root of the corresponding vector field equation only if the gravitational gyromagnetic ratios are properly taken into account.Comment: 8 pages, RevTeX Style, no figures, changed presentation -- now restricted to fields of spin 0, 1/2 and 1 -- some references adde

    Bringing Together Gravity and the Quanta

    Get PDF
    Due to its underlying gauge structure, teleparallel gravity achieves a separation between inertial and gravitational effects. It can, in consequence, describe the isolated gravitational interaction without resorting to the equivalence principle, and is able to provide a tensorial definition for the energy-momentum density of the gravitational field. Considering the conceptual conflict between the local equivalence principle and the nonlocal uncertainty principle, the replacement of general relativity by its teleparallel equivalent can be considered an important step towards a prospective reconciliation between gravitation and quantum mechanics.Comment: 9 pages. Contribution to the proceedings of the Albert Einstein Century International Conference, Paris, 18-22 July, 200

    Mass Generation from Lie Algebra Extensions

    Full text link
    Applied to the electroweak interactions, the theory of Lie algebra extensions suggests a mechanism by which the boson masses are generated without resource to spontaneous symmetry breaking. It starts from a gauge theory without any additional scalar field. All the couplings predicted by the Weinberg-Salam theory are present, and a few others which are nevertheless consistent within the model.Comment: 11 pages; revtex; title and PACS have been changed; comments included in the manuscrip

    Toda Fields on Riemann Surfaces: remarks on the Miura transformation

    Full text link
    We point out that the Miura transformation is related to a holomorphic foliation in a relative flag manifold over a Riemann Surface. Certain differential operators corresponding to a free field description of WW--algebras are thus interpreted as partial connections associated to the foliation.Comment: AmsLatex 1.1, 10 page

    Extensions of Picard 2-Stacks and the cohomology groups Ext^i of length 3 complexes

    Get PDF
    The aim of this paper is to define and study the 3-category of extensions of Picard 2-stacks over a site S and to furnish a geometrical description of the cohomology groups Ext^i of length 3 complexes of abelian sheaves. More precisely, our main Theorem furnishes (1) a parametrization of the equivalence classes of objects, 1-arrows, 2-arrows, and 3-arrows of the 3-category of extensions of Picard 2-stacks by the cohomology groups Ext^i, and (2) a geometrical description of the cohomology groups Ext^i of length 3 complexes of abelian sheaves via extensions of Picard 2-stacks. To this end, we use the triequivalence between the 3-category of Picard 2-stacks and the tricategory T^[-2,0](S) of length 3 complexes of abelian sheaves over S introduced by the second author in arXiv:0906.2393, and we define the notion of extension in this tricategory T^[-2,0](S), getting a pure algebraic analogue of the 3-category of extensions of Picard 2-stacks. The calculus of fractions that we use to define extensions in the tricategory T^[-2,0](S) plays a central role in the proof of our Main Theorem.Comment: 2 New Appendix: in the first Appendix we compute a long exact sequence involving the homotopy groups of an extension of Picard 2-stacks, and in the second Appendix we sketch the proof that the fibered sum of Picard 2-stacks satisfies the universal propert

    Torsion and the Gravitational Interaction

    Full text link
    By using a nonholonomous-frame formulation of the general covariance principle, seen as an active version of the strong equivalence principle, an analysis of the gravitational coupling prescription in the presence of curvature and torsion is made. The coupling prescription implied by this principle is found to be always equivalent with that of general relativity, a result that reinforces the completeness of this theory, as well as the teleparallel point of view according to which torsion does not represent additional degrees of freedom for gravity, but simply an alternative way of representing the gravitational field.Comment: Version 2: minor presentation changes, a reference added, 11 pages (IOP style
    • …
    corecore