14,264 research outputs found

    Characterization of nanometer-sized, mechanically exfoliated graphene on the H-passivated Si(100) surface using scanning tunnelling microscopy

    Full text link
    We have developed a method for depositing graphene monolayers and bilayers with minimum lateral dimensions of 2-10 nm by the mechanical exfoliation of graphite onto the Si(100)-2x1:H surface. Room temperature, ultra-high vacuum (UHV) tunnelling spectroscopy measurements of nanometer-sized single-layer graphene reveal a size dependent energy gap ranging from 0.1-1 eV. Furthermore, the number of graphene layers can be directly determined from scanning tunnelling microscopy (STM) topographic contours. This atomistic study provides an experimental basis for probing the electronic structure of nanometer-sized graphene which can assist the development of graphene-based nanoelectronics.Comment: Accepted for publication in Nanotechnolog

    Quantum-to-classical transition for fluctuations in the early Universe

    Full text link
    According to the inflationary scenario for the very early Universe, all inhomogeneities in the Universe are of genuine quantum origin. On the other hand, looking at these inhomogeneities and measuring them, clearly no specific quantum mechanical properties are observed. We show how the transition from their inherent quantum gravitational nature to classical behaviour comes about -- a transition whereby none of the successful quantitative predictions of the inflationary scenario for the present-day universe is changed. This is made possible by two properties. First, the quantum state for the spacetime metric perturbations produced by quantum gravitational effects in the early Universe becomes very special (highly squeezed) as a result of the expansion of the Universe (as long as the wavelength of the perturbations exceeds the Hubble radius). Second, decoherence through the environment distinguishes the field amplitude basis as being the pointer basis. This renders the perturbations presently indistinguishable from stochastic classical inhomogeneities.Comment: 9 pages, LATE

    The power spectra of CMB and density fluctuations seeded by local cosmic strings

    Get PDF
    We compute the power spectra in the cosmic microwave background and cold dark matter (CDM) fluctuations seeded by strings, using the largest string simulations performed so far to evaluate the two-point functions of their stress energy tensor. We find that local strings differ from global defects in that the scalar components of the stress-energy tensor dominate over vector and tensor components. This result has far reaching consequences. We find that cosmic strings exhibit a single Doppler peak of acceptable height at high â„“\ell. They also seem to have a less severe bias problem than global defects, although the CDM power spectrum in the ``standard'' cosmology (flat geometry, zero cosmological constant, 5% baryonic component) is the wrong shape to fit large scale structure data

    Identification of Neutral B Mesons Using Correlated Hadrons

    Full text link
    The identification of the flavor of a neutral BB meson can make use of hadrons produced nearby in phase space. Examples include the decay of ``B∗∗B^{**}'' resonances or the production of hadrons as a result of the fragmentation process. Some aspects of this method are discussed, including time-dependent effects in neutral BB decays to flavor states, to eigenstates of CP and to other states, and the effects of possible coherence between B0B^0 and B‾0\overline{B}^0 in the initial state. We study the behavior of the leading hadrons in bb-quark jets and the expected properties of B∗∗B^{**} resonances. These are extrapolated from the corresponding D∗∗D^{**} resonances, of whose properties we suggest further studies.Comment: To be submitted to Phys. Rev. D. 26 pages, LaTeX, figures not included (available upon request). Technion-PH-93-32 / EFI 93-4

    Relic Gravitons, Dominant Energy Condition and Bulk Viscous Stresses

    Get PDF
    If the energy momentum tensor contains bulk viscous stresses violating the dominant energy condition (DOC) the energy spectra of the relic gravitons (produced at the time of the DOC's violation) increase in frequency in a calculable way. In a general relativistic context we give examples where the DOC is only violated for a limited amount of time after which the ordinary (radiation dominated) evolution takes place. We connect our discussion to some recent remarks of Grishchuk concerning the detectability of the stochastic gravitational wave background by the forthcoming interferometric detectors.Comment: 7 pages in LaTex style. Accepted for publication in Phys. Rev. D (Rapid Comm.

    Doppler peaks from active perturbations

    Get PDF
    We examine how the qualitative structure of the Doppler peaks in the angular power spectrum of the cosmic microwave anisotropy depends on the fundamental nature of the perturbations which produced them. The formalism of Hu and Sugiyama is extended to treat models with cosmic defects. We discuss how perturbations can be ``active'' or ``passive'' and ``incoherent'' or ``coherent'', and show how causality and scale invariance play rather different roles in these various cases. We find that the existence of secondary Doppler peaks and the rough placing of the primary peak unambiguously reflect these basic properties.Comment: uufile, 8pages, 3 figures. Now available at http://euclid.tp.ph/Papers/index.html; Changes: URL added, Eqn. (8) expanded, grant numbers include

    Negative vacuum energy densities and the causal diamond measure

    Full text link
    Arguably a major success of the landscape picture is the prediction of a small, non-zero vacuum energy density. The details of this prediction depends in part on how the diverging spacetime volume of the multiverse is regulated, a question that remains unresolved. One proposal, the causal diamond measure, has demonstrated many phenomenological successes, including predicting a distribution of positive vacuum energy densities in good agreement with observation. In the string landscape, however, the vacuum energy density is expected to take positive and negative values. We find the causal diamond measure gives a poor fit to observation in such a landscape -- in particular, 99.6% of observers in galaxies seemingly just like ours measure a vacuum energy density smaller than we do, most of them measuring it to be negative.Comment: 9 pages, 3 figures; v2: minor error fixed (results essentially unchanged), reference added; v3: published version, includes a few clarification

    Method for Flavor Tagging in Neutral B Meson Decays

    Full text link
    A method is proposed for tagging the flavor of neutral BB mesons in the study of CP-violating decay asymmetries. The method makes use of a possible difference in interactions in BπB \pi or B∗πB^* \pi systems with isospins 1/2 and 3/2, and would be particularly clean if the I=1/2I = 1/2 systems can be detected as ``B∗∗B^{**}'' resonances.Comment: Submitted to Phys. Rev. D. 11 pages, LaTeX, Technion-PH-92-40 / PITHA 92/39 / EFI 92-5
    • …
    corecore