5 research outputs found

    Bifurcation analysis of dynamical systems with fractional order differential equations via the modified Riemann-Liouville derivative

    No full text
    In this manuscript, the solutions of linear dynamical systems with fractional differential equations via themodified Riemann-Liouville derivative is derived. By using Jumarie type of derivative (JRL), we stated and provedthe Existence and uniqueness theorems of the dynamical systems with fractional order equations. Also a novel stability analysis of fractional dynamical systems by Jumarie type derivative is established and some important stability conditions are determined. The achieved results have various applications in mathematics, plasma physics and almost all branches of physics that have non-conservative forces. Finally, we investigated interesting application of nonlinear space-time fractional Korteweg-de Vries (STFKdV) equation in Saturn F-ring’s region. Moreover, our investigation could be basic interest to explain and interpret the effects of fractional and modification parameters on STFKdV equation. This is novel study on this model by dynamical system (DS) to describe the behavior of nonlinear waves without solve this system

    Netrin-1 as a potential target for metastatic cancer: focus on colorectal cancer

    No full text
    Despite advanced screening technology and cancer treatments available today, metastasis remains an ongoing major cause of cancer-related deaths worldwide. Typically, colorectal cancer is one of the cancers treatable by surgery in conjunction with chemotherapy when it is detected at an early stage. However, it still ranks as the second highest modality and mortality of cancer types in western countries, and this is mostly due to a recurrence of metastatic colorectal cancer post-resection of the primary malignancy. Colorectal cancer metastases predominantly occur in the liver and lung, and yet the molecular mechanisms that regulate these organ-specific colorectal cancer metastases are largely unknown. Therefore, the identification of any critical molecule, which triggers malignancy in colorectal cancer, would be an excellent target for treatment. Netrin-1 was initially discovered as a chemotropic neuronal guidance molecule, and has been marked as a regulator for many cancers including colorectal cancer. Here, we summarise key findings of the role of netrin-1 intrinsic to colorectal cancer cells, extrinsic to the tumour microenvironment and angiogenesis, and consequently, we evaluate netrin-1 as a potential target molecule for metastasis

    Molecular Mechanisms of Tumor Metastasis

    No full text
    corecore