6 research outputs found
Seamless handover in IP over ICN networks: A coding approach
Seamless connectivity plays a key role in realizing QoS-based delivery in mobile networks. However, current handover mechanisms hinder the ability to meet this target, due to the high ratio of handover failures, packet loss and service interruption. These challenges are further magnified in Heterogeneous Cellular Networks (HCN) such as Advanced Long Term Evolution (LTE-Advanced) and LTE in unlicensed spectrum (LTE-LAA), due to the variation in handover requirements. Although mechanisms, such as Fast Handover for Proxy Mobile IPv6 (PFMIPv6), attempt to tackle these issues; they come at a high cost with sub-optimal outcomes. This primarily stems from various limitations of existing IP core networks. In this paper we propose a novel handover solution for mobile networks, exploiting the advantages of a revolutionary IP over Information-Centric Networking (IP-over-ICN) architecture in supporting flexible service provisioning through anycast and multicast, combined with the advantages of random linear coding techniques in eliminating the need for retransmissions. Our solution allows coded traffic to be disseminated in a multicast fashion during handover phase from source directly to the destination(s), without the need for an intermediate anchor as in exiting solutions; thereby, overcoming packet loss and handover failures, while reducing overall delivery cost. We evaluate our approach with an analytical and simulation model showing significant cost reduction compared to PFMIPv6
Anchor Free IP Mobility
Efficient mobility management techniques are critical in providing seamless connectivity and session continuity between a mobile node and the network during its movement. However, current mobility management solutions generally require a central entity in the network core, tracking IP address movement, and anchoring traffic from source to destination through point-to-point tunnels. Intuitively, this approach suffers from scalability limitations as it creates bottlenecks in the network, due to sub-optimal routing via the anchor point. This is often termed 'dog-leg' routing. Meanwhile, alternative anchorless, solutions are not feasible due to the current limitations of the IP semantics, which strongly tie addressing information to location. In contrast, this paper introduces a novel anchorless mobility solution that overcomes these limitations by exploiting a new path-based forwarding fabric together with emerging mechanisms from information-centric networking. These mechanisms decouple the end-system IP address from the path based data forwarding to eliminate the need for anchoring traffic through the network core; thereby, allowing flexible path calculation and service provisioning. Furthermore, by eliminating the limitation of routing via the anchor point, our approach reduces the network cost compared to anchored solutions through bandwidth saving while maintaining comparable handover delay. The proposed solution is applicable to both cellular and large-scale wireless LAN networks that aim to support seamless handover in a single operator domain scenario. The solution is modeled as a Markov-chain which applies a topological basis to describe mobility. The validity of the proposed Markovian model was verified through simulation of both random walk mobility on random geometric networks and trace information from a large-scale, city wide data set. Evaluation results illustrate a significant reduction in the total network traffic cost by 45 percent or more when using the proposed solution, compared to Proxy Mobile IPv6
Gain More for Less: The Surprising Benefits of QoS Management in Constrained NDN Networks
Quality of Service (QoS) in the IP world mainly manages forwarding resources,
i.e., link capacities and buffer spaces. In addition, Information Centric
Networking (ICN) offers resource dimensions such as in-network caches and
forwarding state. In constrained wireless networks, these resources are scarce
with a potentially high impact due to lossy radio transmission. In this paper,
we explore the two basic service qualities (i) prompt and (ii) reliable traffic
forwarding for the case of NDN. The resources we take into account are
forwarding and queuing priorities, as well as the utilization of caches and of
forwarding state space. We treat QoS resources not only in isolation, but
correlate their use on local nodes and between network members. Network-wide
coordination is based on simple, predefined QoS code points. Our findings
indicate that coordinated QoS management in ICN is more than the sum of its
parts and exceeds the impact QoS can have in the IP world
Stateless multicast switching in software defined networks
© 2016 IEEE. Multicast data delivery can significantly reduce traffic in operators' networks, but has been limited in deployment due to concerns such as the scalability of state management. This paper shows how multicast can be implemented in contemporary software defined networking (SDN) switches, with less state than existing unicast switching strategies, by utilising a Bloom Filter (BF) based switching technique. Furthermore, the proposed mechanism uses only proactive rule insertion, and thus, is not limited by congestion or delay incurred by reactive controller-aided rule insertion. We compare our solution against common switching mechanisms such as layer-2 switching and MPLS in realistic network topologies by modelling the TCAM state sizes in SDN switches. The results demonstrate that our approach has significantly smaller state size compared to existing mechanisms and thus is a multicast switching solution for next generation networks