2 research outputs found

    Energy comparison and cost estimation of pressure-retarded osmosis using spiral wound membrane

    Get PDF
    Advancements in Pressure Retarded Osmosis (PRO) technology are enhancing the feasibility of evaluating its economic viability against other renewable energy production methods. This is done using the Levelized Cost of Energy (LCOE) as a metric. The study focuses on three PRO scenarios designed to minimize environmental impact and promote sustainable energy. These scenarios utilize a spiral-wound membrane module combined with hyper-saline solutions from Reverse Osmosis (RO) and wastewater from demineralization processes. Experimental results using a commercial spiral-wound membrane in the PRO system yielded LCOE values of USD 0.0702/kWh for a draw solution (DS) concentration of 36.2 g/l, USD 0.0563/kWh for 44.2 g/l, and USD 0.0721/kWh for 51.8 g/l. The study also evaluated environmental viability by considering the cost of CO2 emissions. This comprehensive comparison highlighted PRO's competitiveness with fossil fuels, showing it to be a reasonable alternative to coal and oil but less practical than natural gas. Specifically, the environmental analysis revealed that PRO is approximately 25.2 % more competitive than coal and 9.76 % more competitive than oil but 27.16 % less competitive compared to natural gas in terms of CO2 emission costs. This underscores the importance of considering carbon emission mitigation in energy generation.</p

    Solar pond as a low grade energy source for water desalination and power generation: a short review

    No full text
    Water and energy are thoroughly linked: water is required to generate, transfer, and use the lot characteristics of energy; and energy is demanded to extract, treat, and distribute water. Shortage in clean water deems as the main challenge facing the world as a result of the escalating in the energy consumption required for desalinating the sea/brackish water which increases costs and provokes on the marine life and environment due to the high concentrate solute produced from desalination plants. Solar pond is a reservoir of water with different salt concentration implements to gather and store the incident solar energy which it can be employed later on in different thermal energy applications, such as industrialized heating process, electricity power generation, farming crop drying and cooling of houses. In this paper a short but concentrated review of the literatures that dealt with the implemented of the solar pond to illustrate succinctly the historical background for the solar ponds as well as the most word-wide established solar ponds. In addition to the theoretical background of heat and mass transfer which governed the solar pond operation is presented and discussed
    corecore