20 research outputs found
FGFR4 Arg388 allele correlates with tumour thickness and FGFR4 protein expression with survival of melanoma patients
A single nucleotide polymorphism in the gene for FGFR4 (−Arg388) has been associated with progression in various types of human cancer. Although fibroblast growth factors (FGFs) belong to the most important growth factors in melanoma, expression of FGF receptor subtype 4 has not been investigated yet. In this study, the protein expression of this receptor was analysed in 137 melanoma tissues of different progression stages by immunohistochemistry. FGFR4 protein was expressed in 45% of the specimens and correlated with pTNM tumour stages (UICC, P=0.023 and AJCC, P=0.046), presence of microulceration (P=0.009), tumour vascularity (P=0.001), metastases (P=0.025), number of primary tumours (P=0.022), overall survival (P=0.047) and disease-free survival (P=0.024). Furthermore, FGFR4 Arg388 polymorphism was analysed in 185 melanoma patients by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The Arg388 allele was detected in 45% of the melanoma patients and was significantly associated with tumour thickness (by Clark's level of invasion (P=0.004) and by Breslow in mm (P=0.02)) and the tumour subtype nodular melanoma (P=0.002). However, there was no correlation of the FGFR4 Arg388 allele with overall and disease-free survival. In conclusion, the Arg388 genotype and the protein expression of FGFR4 may be potential markers for progression of melanoma
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
Dynamics of Disks and Warps
This chapter reviews theoretical work on the stellar dynamics of galaxy
disks. All the known collective global instabilities are identified, and their
mechanisms described in terms of local wave mechanics. A detailed discussion of
warps and other bending waves is also given. The structure of bars in galaxies,
and their effect on galaxy evolution, is now reasonably well understood, but
there is still no convincing explanation for their origin and frequency. Spiral
patterns have long presented a special challenge, and ideas and recent
developments are reviewed. Other topics include scattering of disk stars and
the survival of thin disks.Comment: Chapter accepted to appear in Planets, Stars and Stellar Systems, vol
5, ed G. Gilmore. 32 pages, 17 figures. Includes minor corrections made in
proofs. Uses emulateapj.st