2,703 research outputs found
NS1 Specific CD8(+) T-Cells with Effector Function and TRBV11 Dominance in a Patient with Parvovirus B19 Associated Inflammatory Cardiomyopathy
Background: Parvovirus B19 (B19V) is the most commonly detected virus in endomyocardial biopsies (EMBs) from patients with inflammatory cardiomyopathy (DCMi). Despite the importance of T-cells in antiviral defense, little is known about the role of B19V specific T-cells in this entity.
Methodology and Principal Findings: An exceptionally high B19V viral load in EMBs (115,091 viral copies/mg nucleic acids), peripheral blood mononuclear cells (PBMCs) and serum was measured in a DCMi patient at initial presentation, suggesting B19V viremia. The B19V viral load in EMBs had decreased substantially 6 and 12 months afterwards, and was not traceable in PBMCs and the serum at these times. Using pools of overlapping peptides spanning the whole B19V proteome, strong CD8(+) T-cell responses were elicited to the 10-amico-acid peptides SALKLAIYKA (19.7% of all CD8(+) cells) and QSALKLAIYK (10%) and additional weaker responses to GLCPHCINVG (0.71%) and LLHTDFEQVM (0.06%). Real-time RT-PCR of IFN gamma secretion-assay-enriched T-cells responding to the peptides, SALKLAIYKA and GLCPHCINVG, revealed a disproportionately high T-cell receptor Vbeta (TRBV) 11 expression in this population. Furthermore, dominant expression of type-1 (IFN gamma, IL2, IL27 and Tbet) and of cytotoxic T-cell markers (Perforin and Granzyme B) was found, whereas gene expression indicating type-2 (IL4, GATA3) and regulatory T-cells (FoxP3) was low.
Conclusions: Our results indicate that B19V Ag-specific CD8(+) T-cells with effector function are involved in B19V associated DCMi. In particular, a dominant role of TRBV11 and type-1/CTL effector cells in the T-cell mediated antiviral immune response is suggested. The persistence of B19V in the endomyocardium is a likely antigen source for the maintenance of CD8(+) T-cell responses to the identified epitopes
A clock network for geodesy and fundamental science
Leveraging the unrivaled performance of optical clocks in applications in
fundamental physics beyond the standard model, in geo-sciences, and in
astronomy requires comparing the frequency of distant optical clocks
truthfully. Meeting this requirement, we report on the first comparison and
agreement of fully independent optical clocks separated by 700 km being only
limited by the uncertainties of the clocks themselves. This is achieved by a
phase-coherent optical frequency transfer via a 1415 km long telecom fiber link
that enables substantially better precision than classical means of frequency
transfer. The fractional precision in comparing the optical clocks of three
parts in was reached after only 1000 s averaging time, which is
already 10 times better and more than four orders of magnitude faster than with
any other existing frequency transfer method. The capability of performing high
resolution international clock comparisons paves the way for a redefinition of
the unit of time and an all-optical dissemination of the SI-second.Comment: 14 pages, 3 figures, 1 tabl
BioâOrthogonal Polymer Coatings for CoâPresentation of Biomolecules
Controlled presentation of biomolecules on synthetic substrates is an important aspect for biomaterials development. If the immobilization of multiple biomolecules is required, highly efficient orthogonal surface chemistries are needed to ensure the precision of the immobilization. In this communication, chemical vapor deposition (CVD) copolymerization is used to fabricate polymer coatings with controlled ratio of alkyne and pentafluorophenyl ester (Pfpâester) groups. Cyclic argineâglycineâaspartic acid (cRGD) adhesion peptide and epidermal growth factor (EGF) are immobilized through alkyneâazide cycloaddtion (âclickâ chemistry) and active esterâamine reaction, respectively. Cell studies with human umbilical vein endothelial cells (HUVEC) and A431 cell lines demonstrate the biological activity of the coimmobilized biomolecules. Polymer coatings with bioâorthogonal functional groups are developed for coâimmobilization of adhesion peptide and growth factor. The coatings are generated by chemical vapor deposition polymerization, with both alkyne and pentafluorophenyl ester which are used to covalently tether the biomolecules. The biological activity of the coâimmobilized biomolecules is demonstrated.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91189/1/marc_201100819_sm_suppl.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/91189/2/640_ftp.pd
Mathematical and Statistical Techniques for Systems Medicine: The Wnt Signaling Pathway as a Case Study
The last decade has seen an explosion in models that describe phenomena in
systems medicine. Such models are especially useful for studying signaling
pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to
showcase current mathematical and statistical techniques that enable modelers
to gain insight into (models of) gene regulation, and generate testable
predictions. We introduce a range of modeling frameworks, but focus on ordinary
differential equation (ODE) models since they remain the most widely used
approach in systems biology and medicine and continue to offer great potential.
We present methods for the analysis of a single model, comprising applications
of standard dynamical systems approaches such as nondimensionalization, steady
state, asymptotic and sensitivity analysis, and more recent statistical and
algebraic approaches to compare models with data. We present parameter
estimation and model comparison techniques, focusing on Bayesian analysis and
coplanarity via algebraic geometry. Our intention is that this (non exhaustive)
review may serve as a useful starting point for the analysis of models in
systems medicine.Comment: Submitted to 'Systems Medicine' as a book chapte
Light enhanced calcification in Stylophora pistillata: effects of glucose, glycerol and oxygen
Zooxanthellate corals have long been known to calcify faster in the light than in the dark, however the mechanism underlying this process has been uncertain. Here we tested the effects of oxygen under controlled pCO2 conditions and fixed carbon sources on calcification in zooxanthellate and bleached microcolonies of the branching coral Stylophora pistillata. In zooxanthellate microcolonies, oxygen increased dark calcification rates to levels comparable to those measured in the light. However in bleached microcolonies oxygen alone did not enhance calcification, but when combined with a fixed carbon source (glucose or glycerol), calcification increased. Respiration rates increased in response to oxygen with greater increases when oxygen is combined with fixed carbon. ATP content was largely unaffected by treatments, with the exception of glycerol which decreased ATP levels
Geological Fracture Mapping Using Electromagnetic Geotomography
This article describes the evaluation of a new geophysical technique used to map fractures between boreholes: electromagnetic geotomography used in conjunction with salt water tracers. An experiment has been performed in a granitic rock mass. Geotomographic images have been generated and compared with borehole geophysical data: neutron logs, acoustic velocity logs, caliper logs and acoustic televiewer records. Comparisons between the images and the geophysical logs indicate that clusters of fractures were detected but single fractures were not
Recognizing Speech in a Novel Accent: The Motor Theory of Speech Perception Reframed
The motor theory of speech perception holds that we perceive the speech of
another in terms of a motor representation of that speech. However, when we
have learned to recognize a foreign accent, it seems plausible that recognition
of a word rarely involves reconstruction of the speech gestures of the speaker
rather than the listener. To better assess the motor theory and this
observation, we proceed in three stages. Part 1 places the motor theory of
speech perception in a larger framework based on our earlier models of the
adaptive formation of mirror neurons for grasping, and for viewing extensions
of that mirror system as part of a larger system for neuro-linguistic
processing, augmented by the present consideration of recognizing speech in a
novel accent. Part 2 then offers a novel computational model of how a listener
comes to understand the speech of someone speaking the listener's native
language with a foreign accent. The core tenet of the model is that the
listener uses hypotheses about the word the speaker is currently uttering to
update probabilities linking the sound produced by the speaker to phonemes in
the native language repertoire of the listener. This, on average, improves the
recognition of later words. This model is neutral regarding the nature of the
representations it uses (motor vs. auditory). It serve as a reference point for
the discussion in Part 3, which proposes a dual-stream neuro-linguistic
architecture to revisits claims for and against the motor theory of speech
perception and the relevance of mirror neurons, and extracts some implications
for the reframing of the motor theory
Mesenchymal stromal cells inhibit NLRP3 inflammasome activation in a model of Coxsackievirus B3-induced inflammatory cardiomyopathy
Inflammation in myocarditis induces cardiac injury and triggers disease
progression to heart failure. NLRP3 inflammasome activation is a newly
identified amplifying step in the pathogenesis of myocarditis. We previously
have demonstrated that mesenchymal stromal cells (MSC) are cardioprotective in
Coxsackievirus B3 (CVB3)-induced myocarditis. In this study, MSC markedly
inhibited left ventricular (LV) NOD2, NLRP3, ASC, caspase-1, IL-1ÎČ, and IL-18
mRNA expression in CVB3-infected mice. ASC protein expression, essential for
NLRP3 inflammasome assembly, increased upon CVB3 infection and was abrogated
in MSC-treated mice. Concomitantly, CVB3 infection in vitro induced NOD2
expression, NLRP3 inflammasome activation and IL-1ÎČ secretion in HL-1 cells,
which was abolished after MSC supplementation. The inhibitory effect of MSC on
NLRP3 inflammasome activity in HL-1 cells was partly mediated via secretion of
the anti-oxidative protein stanniocalcin-1. Furthermore, MSC application in
CVB3-infected mice reduced the percentage of NOD2-, ASC-, p10- and/or IL-1ÎČ-
positive splenic macrophages, natural killer cells, and dendritic cells. The
suppressive effect of MSC on inflammasome activation was associated with
normalized expression of prominent regulators of myocardial contractility and
fibrosis to levels comparable to control mice. In conclusion, MSC treatment in
myocarditis could be a promising strategy limiting the adverse consequences of
cardiac and systemic NLRP3 inflammasome activation
Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding
We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics
- âŠ