786 research outputs found

    Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) integration

    Get PDF
    Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration combines organic clectro-optic materials with silicon photonic and plasmonic waveguides, The concept enables fast and power-efficient modulators that support advanced modulation formats such as QPSK and 16QAM

    Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) integration

    Get PDF
    Silicon photonics offers tremendous potential for inexpensive high-yield photonic-electronic integration. Besides conventional dielectric waveguides, plasmonic structures can also be efficiently realized on the silicon photonic platform, reducing device footprint by more than an order of magnitude. However, nei-ther silicon nor metals exhibit appreciable second-order optical nonlinearities, thereby making efficient electro-optic modulators challenging to realize. These deficiencies can be overcome by the concepts of silicon-organic hybrid (SOH) and plasmonic-organic hybrid integration, which combine SOI waveguides and plasmonic nanostructures with organic electro-optic cladding materials

    Modelling diverse root density dynamics and deep nitrogen uptake — a simple approach

    Get PDF
    We present a 2-D model for simulation of root density and plant nitrogen (N) uptake for crops grown in agricultural systems, based on a modification of the root density equation originally proposed by Gerwitz and Page in J Appl Ecol 11:773–781, (1974). A root system form parameter was introduced to describe the distribution of root length vertically and horizontally in the soil profile. The form parameter can vary from 0 where root density is evenly distributed through the soil profile, to 8 where practically all roots are found near the surface. The root model has other components describing root features, such as specific root length and plant N uptake kinetics. The same approach is used to distribute root length horizontally, allowing simulation of root growth and plant N uptake in row crops. The rooting depth penetration rate and depth distribution of root density were found to be the most important parameters controlling crop N uptake from deeper soil layers. The validity of the root distribution model was tested with field data for white cabbage, red beet, and leek. The model was able to simulate very different root distributions, but it was not able to simulate increasing root density with depth as seen in the experimental results for white cabbage. The model was able to simulate N depletion in different soil layers in two field studies. One included vegetable crops with very different rooting depths and the other compared effects of spring wheat and winter wheat. In both experiments variation in spring soil N availability and depth distribution was varied by the use of cover crops. This shows the model sensitivity to the form parameter value and the ability of the model to reproduce N depletion in soil layers. This work shows that the relatively simple root model developed, driven by degree days and simulated crop growth, can be used to simulate crop soil N uptake and depletion appropriately in low N input crop production systems, with a requirement of few measured parameters

    Dihydrodinophysistoxin-1 Produced by Dinophysis norvegica in the Gulf of Maine, USA and Its Accumulation in Shellfish

    Get PDF
    Dihydrodinophysistoxin-1 (dihydro-DTX1, (M-H)−m/z 819.5), described previously from a marine sponge but never identified as to its biological source or described in shellfish, was detected in multiple species of commercial shellfish collected from the central coast of the Gulf of Maine, USA in 2016 and in 2018 during blooms of the dinoflagellate Dinophysis norvegica. Toxin screening by protein phosphatase inhibition (PPIA) first detected the presence of diarrhetic shellfish poisoning-like bioactivity; however, confirmatory analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) failed to detect okadaic acid (OA, (M-H)−m/z 803.5), dinophysistoxin-1 (DTX1, (M-H)−m/z 817.5), or dinophysistoxin-2 (DTX2, (M-H)−m/z 803.5) in samples collected during the bloom. Bioactivity-guided fractionation followed by liquid chromatography-high resolution mass spectrometry (LC-HRMS) tentatively identified dihydro-DTX1 in the PPIA active fraction. LC-MS/MS measurements showed an absence of OA, DTX1, and DTX2, but confirmed the presence of dihydro-DTX1 in shellfish during blooms of D. norvegica in both years, with results correlating well with PPIA testing. Two laboratory cultures of D. norvegica isolated from the 2018 bloom were found to produce dihydro-DTX1 as the sole DSP toxin, confirming the source of this compound in shellfish. Estimated concentrations of dihydro-DTX1 were \u3e0.16 ppm in multiple shellfish species (max. 1.1 ppm) during the blooms in 2016 and 2018. Assuming an equivalent potency and molar response to DTX1, the authority initiated precautionary shellfish harvesting closures in both years. To date, no illnesses have been associated with the presence of dihydro-DTX1 in shellfish in the Gulf of Maine region and studies are underway to determine the potency of this new toxin relative to the currently regulated DSP toxins in order to develop appropriate management guidance

    Characterization of Multiple Ion Channels in Cultured Human Cardiac Fibroblasts

    Get PDF
    Background: Although fibroblast-to-myocyte electrical coupling is experimentally suggested, electrophysiology of cardiac fibroblasts is not as well established as contractile cardiac myocytes. The present study was therefore designed to characterize ion channels in cultured human cardiac fibroblasts. Methods and Findings: A whole-cell patch voltage clamp technique and RT-PCR were employed to determine ion channels expression and their molecular identities. We found that multiple ion channels were heterogeneously expressed in human cardiac fibroblasts. These include a big conductance Ca2+-activated K+ current (BKCa) in most (88%) human cardiac fibroblasts, a delayed rectifier K+ current (IKDR) and a transient outward K+ current (Ito) in a small population (15 and 14%, respectively) of cells, an inwardly-rectifying K+ current (IKir) in 24% of cells, and a chloride current (ICl) in 7% of cells under isotonic conditions. In addition, two types of voltage-gated Na+ currents (INa) with distinct properties were present in most (61%) human cardiac fibroblasts. One was a slowly inactivated current with a persistent component, sensitive to tetrodotoxin (TTX) inhibition (INa.TTX, IC50 = 7.8 nM), the other was a rapidly inactivated current, relatively resistant to TTX (INa.TTXR, IC50 = 1.8 μM). RT-PCR revealed the molecular identities (mRNAs) of these ion channels in human cardiac fibroblasts, including KCa.1.1 (responsible for BKCa), Kv1.5, Kv1.6 (responsible for IKDR), Kv4.2, Kv4.3 (responsible for Ito), Kir2.1, Kir2.3 (for IKir), Clnc3 (for ICl), NaV1.2, NaV1.3, NaV1.6, NaV1.7 (for INa.TTX), and NaV1.5 (for INa.TTXR). Conclusions: These results provide the first information that multiple ion channels are present in cultured human cardiac fibroblasts, and suggest the potential contribution of these ion channels to fibroblast-myocytes electrical coupling. © 2009 Li et al.published_or_final_versio

    How should we store avian faecal samples for microbiota analyses? Comparing efficacy and cost-effectiveness

    Get PDF
    Analyses of bacterial DNA in faecal samples are becoming ever more common, yet we still do not know much about bird microbiomes. These challenges partly lie in the unique chemical nature of their faeces, and in the choice of sample storage method, which affects DNA preservation and the resulting microbiome composition. However, there is little information available on how best to preserve avian faeces for microbial analyses. This study evaluates five widely used methods for preserving nucleic acids and inferring microbiota profiles, for their relative efficacy, cost, and practicality. We tested the five methods (in-situ bead-beating with a TerraLyzer instrument, silica-bead desiccation, ethanol, refrigeration and RNAlater buffer) on 50 fresh faecal samples collected from captive House sparrows (Passer domesticus). In line with other studies, we find that different storage methods lead to distinct bacterial profiles. Storage method had a large effect on community composition and the relative abundance of dominant phyla such as Firmicutes and Proteobacteria, with the most significant changes observed for refrigerated samples. Furthermore, differences in the abundance of aerobic or facultatively aerobic taxa, particularly in refrigerated samples and those stored in ethanol, puts limits on comparisons of bacterial communities across different storage methods. Finally, the methods that did not include in-situ bead-beating did not recover comparable levels of microbiota to the samples that were immediately processed and preserved using a TerraLyzer device. However, this method is also less practical and more expensive under field work circumstances. Our study is the most comprehensive analysis to date on how storage conditions affect subsequent molecular assays applied to avian faeces and provides guidance on cost and practicality of methods under field conditions

    A comparative study of MEA and DEA for post-combustion CO2 capture with different process configurations

    Get PDF
    This paper presented a comparative study of monoethanolamine (MEA) and diethanolamine (DEA) for post-combustion CO2 capture (PCC) process with different process configurations to study the interaction effect between solvent and process. The steady state process model of the conventional MEA-based PCC process was developed in Pro/II® and was validated with the experimental data. Then ten different process configurations were simulated for both MEA and DEA. Their performances in energy consumption were compared in terms of reboiler duty and total equivalent work. The results show that DEA generally has better thermal performances than MEA for all these ten process configurations. Seven process configurations provide 0.38%–4.61% total energy saving compared with the conventional PCC process for MEA, and other two configurations are not favourable. For DEA, except one configuration, other process configurations have 0.27%–4.50% total energy saving. This work also analyzed the sensitivities of three key parameters (amine concentration, stripper pressure and lean solvent loading) in conventional process and five process modifications to show optimization strategy
    corecore