19 research outputs found

    Synthesis of Novel 2-(Substituted amino)alkylthiopyrimidin-4(3H)-ones as Potential Antimicrobial Agents

    No full text
    5-Alkyl-6-(substituted benzyl)-2-thiouracils 3a,c were reacted with (2-chloroethyl) diethylamine hydrochloride to afford the corresponding 2-(2-diethylamino)ethylthiopyrimidin- 4(3H)-ones 4a,b. Reaction of 3a–c with N-(2-chloroethyl)pyrrolidine hydrochloride and/or N-(2-chloroethyl)piperidine hydrochloride gave the corresponding 2-[2-(pyrrolidin-1-yl)ethyl]-thiopyrimidin-4(3H)-ones 5a–c and 2-[2-(piperidin-1-yl)ethyl]thiopyrimidin-4(3H)-ones 6a,b, respectively. Treatment of 3a–d with N-(2-chloroethyl)morpholine hydrochloride under the same reaction conditions formed the corresponding 2-[2-(morpholin-4-yl)ethyl]thiopyrimidines 6c–f. On the other hand, 3a,b were reacted with N-(2-bromoethyl)phthalimide and/or N-(3-bromopropyl)phthalimide to furnish the corresponding 2-[2-(N-phthalimido)ethyl]-pyrimidines 7a,b and 2-[3-(N-phthalimido)-propyl]pyrimidines 7c,d, respectively. Compounds 3a–d, 4a,b, 5a–c, 6a–f and 7a–d were screened against Gram-positive bacteria (Staphylococcus aureus ATCC 29213, Bacillus subtilis NRRL 4219 and Bacillus cereus), yeast-like pathogenic fungus (Candida albicans ATCC 10231) and a fungus (Aspergillusniger NRRL 599). The best antibacterial activity was displayed by compounds 3a, 3b, 4a, 5a, 5b, 6d, 6f, 7b and 7d, whereas compounds 4b, 5b, 5c, 6a, 6b and 6f exhibited the best antifungal activity

    Synthesis, Single Crystal X-Ray Structure, and Antimicrobial Activity of 6-(1,3-Benzodioxol-5-ylmethyl)-5-ethyl-2-{[2-(morpholin-4-yl)ethyl]sulfanyl}pyrimidin-4(3H)-one

    No full text
    Synthesis, X-ray structure and antimicrobial activity of 6-(1,3-benzodioxol-5-ylmethyl)-5-ethyl-2-{[2-(morpholin-4-yl)ethyl]sulfanyl}pyrimidin-4(3H)-one (8) are reported. Compound 8 exhibited activity towards S. aureus with MIC value of 0.0619 μmol/mL while it showed activity towards B. subtilis, B. cereus, C. albicans, and A. niger with MIC = 0.1859 μmol/mL. Single crystal X-ray structure of the title compound 8 confirmed its S-alkylation. The title compound crystallizes in the triclinic, P-1, a=11.1220 (5) Å, b=12.2241 (5) Å, c=21.5246 (9) Å, α=88.958 (2)°, β=79.836 (2)°, γ=79.384 (2)°, V=2830.9 (2) Å3, Z=6, R(F)=0.046, wR(F2)=0.110, T=100 K. The crystal structure is stabilized by weak intermolecular C–H⋯O and N–H⋯O hydrogen interactions

    Production, partial optimization and characterization of keratinase enzyme by Arthrobacter sp. NFH5 isolated from soil samples

    No full text
    Abstract The study was conducted to select the best promising keratinolytic bacterial strain. A good keratinase positive bacterium isolated from the soil samples of Hazaribagh tannery industrial zone, Dhaka was identified as Arthrobacter genus depending on the conventional techniques and confirmed as Arthrobacter sp. by sequencing 16S rRNA gene. The medium components and culture conditions were optimized to enhance keratinase production through shake flask culture. Keratin and feather powder (10 g/l or 1%) were good substrates for the highest keratinase production along with yeast extract (0.2 g/l or 0.02%) as an organic nitrogen source and potassium nitrate (1 g or 0.1%) as an inorganic nitrogen source. Maximum yield of keratinase was found after 24 h of incubation at 37 °C with an initial pH of 7.0 and inoculums volume 5% under 150 rpm when keratin, yeast extract and potassium nitrate were used as nutrient sources. Keratinase production was more than 5.0-fold increased when all optimized parameters were applied simultaneously. The optimum reaction temperature and pH were determined to be 40 °C and 8.0 respectively for crude keratinase activity. Therefore, Arthrobacter sp. NFH5 might be used for large scale production of keratinase for industrial purposes in less time
    corecore