16 research outputs found

    The complete mitochondrial genome of the oriental fruit moth Grapholita molesta (Busck) (Lepidoptera: Tortricidae)

    Get PDF
    The oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae) currently is one of the economically most destructive pest species of stone and pome fruits worldwide. Here we sequenced the complete mitochondrial genome of this pest. This genome is 15,776 bp long, with an A + T content of 81.24%, containing 37 typical animal mitochondrial genes and an A + T-rich region. All gene are arranged as hypothesized ancestral gene order of insects except for trnM, which was shuffled from 3′ downstream of trnQ to 5′ upstream of trnI. cox1 gene uses unusual CGA start codon, as that in all other sequenced lepidopteran mitochondrial genome. The secondary structures for the two rRNA genes were predicted. All helices typically present in insect mitochondrial rRNA genes are generated. A microsatellite sequence was inserted into the region of H2347 in rrnL in G. molesta and two other sequenced tortricid mitochondrial genomes, indicating that the insertion event in this helix might occurred anciently in family Tortricidae. All of the 22 typical animal tRNA genes have a typical cloverleaf structure except for trnS2, in which the D-stem pairings in the DHU arm are absent. An intergenic sequence is present between trnQ and nad2 as well as in other sequenced lepidopteran mitochondrial genomes, which was presumed to be a remnant of trnM gene and its boundary sequences after the duplication of trnM to the upstream of trnI in Lepidoptera. The A + T-rich region is 836 bp, containing six repeat sequences of “TTATTATTATTATTAAATA(G)TTT.

    Theoretical Models of Eumelanin Protomolecules and their Optical Properties

    Get PDF
    The molecular structure of melanin, one of the most ubiquitous natural pigments in living organisms, is not known and its multifaceted biological role is still debated. We examine structural models for eumelanin protomolecules, based on tetramers consisting of four monomer units (hydroquinone, indolequinone, and its two tautomers), in arrangements that contain an interior porphyrin ring. These models reproduce convincingly many aspects of eumelanin's experimentally observed behavior. In particular, we present a plausible synthetic pathway of the tetramers and their further complexation through interlayer stacking, or through formation of helical superstructures, into eumelanin macromolecules. The unsaturated nature of C-C bonds in indolequinone units and the finite size of protomolecules introduce covalent bond formation between stacked layers. We employ time-dependent density functional theory to calculate the optical absorption spectrum of each molecule along the eumelanin synthesis pathway, which gradually develops into the characteristic broad-band adsorption of melanin pigment due to electron delocalization. These optical spectra may serve as signatures for identifying intermediate structures
    corecore