51,351 research outputs found
Identification of a Sjogren\u27s syndrome susceptibility locus at OAS1 that influences isoform switching, protein expression, and responsiveness to type I interferons
In vitro Culture of Several Rice Cultivars
Tissue culture methods have been established to regenerate certain rice (Oryza sativa L) cultivars, but regeneration of the rice cultivars widely grown in Arkansas has not been reported. This study has established an in vitroculture for the rice cultivars \u27Nortai\u27, \u27Starbonnet\u27, \u27Mars\u27, Tebonnet\u27, \u27Newbonnet\u27, and \u27Lemont\u27. Callus was induced in the dark at either 20 or 28 C from dehusked seeds cultured on Murashige and Skoog (MS) medium (Murashige and Skoog, 1962) containing 40 g L^-1 sucrose, 10 g L^1 agar, 0.5, 1.0, or 2.0 mg L^-1 1 2,4-dichlorophenoxyacetic acid (2,4-D) and adjusted to pH 5.7. After four weeks the calli were weighed, transferred onto MS medium containing no 2,4-D, and maintained in a 1 2-h photoperiod (65 uE m^-2 s^-1) at 25 ± 2 C to induce plant regeneration. Callus production was best when cultured on a medium containing 1.0 mg L^-1 2,4-D and incubated at 28 C. Plant regeneration was observed two to four weeks later. The percentage of calli regenerating platlets varied with the cultivar and the callus induction treatment. Callus induction at 20 C on a medium with a 2,4-D level less than 2.0 mg L^-1 enhanced the regenerability of most cultivars. Regenerates were transplanted to soil and grow normally to maturity. This system can be helpful in improving rice cultivars with tissue culture techniques such as somaclonal variant selection and somatic hybridization
Fabrication of thin film solar cell materials by APCVD
Thin film solar cells are currently being implemented commercially as they reduce the amount of semiconductor material required for each cell when compared to silicon wafers, thereby lowering the cost of production. Currently two direct band gap chalcogenide thin-film technologies, CdTe and CuInGa(S,Se)2 (CIGS), yield the highest reported power conversion efficiencies of 16.5% and 20.3%, respectively. In addition, Cu2ZnSnS4 (CZTS) is one of the most promising chalcogenide thin film photovoltaic absorber materials; with an optimal band gap of about 1.5 eV. More importantly, CZTS consists of abundant and non-toxic elements, so research on CZTS thin-film solar cells has been increasing significantly in recent years. Moreover, Sb2S3 based chalcogenide thin films have been proposed for use in photovoltaic applications. The preparation of chalcogenide thin films solar cells commonly use physical vapour deposition methods including thermal/e-beam evaporation, sputtering, and pulsed laser deposition, electrochemical deposition, spray pyrolysis, solution-based synthesis, followed by the sulfurization or selenization annealing process. In this paper, we report a non-vacuum process, using atmospheric pressure chemical vapour deposition (APCVD), to fabricate chalcogenide thin film solar cell materials as well as transparent conductive oxide (TCO) thin films. The optical, electrical, and structural properties of these materials were characterized by UV-VIS-NIR, four-point probes, SEM, EDX, XRD, Micro-Raman
Model Checking Tap Withdrawal in C. Elegans
We present what we believe to be the first formal verification of a
biologically realistic (nonlinear ODE) model of a neural circuit in a
multicellular organism: Tap Withdrawal (TW) in \emph{C. Elegans}, the common
roundworm. TW is a reflexive behavior exhibited by \emph{C. Elegans} in
response to vibrating the surface on which it is moving; the neural circuit
underlying this response is the subject of this investigation. Specifically, we
perform reachability analysis on the TW circuit model of Wicks et al. (1996),
which enables us to estimate key circuit parameters. Underlying our approach is
the use of Fan and Mitra's recently developed technique for automatically
computing local discrepancy (convergence and divergence rates) of general
nonlinear systems. We show that the results we obtain are in agreement with the
experimental results of Wicks et al. (1995). As opposed to the fixed parameters
found in most biological models, which can only produce the predominant
behavior, our techniques characterize ranges of parameters that produce (and do
not produce) all three observed behaviors: reversal of movement, acceleration,
and lack of response
- …
