403 research outputs found

    Multiple waves propagate in random particulate materials

    Get PDF
    © 2019 Society for Industrial and Applied Mathematics Publications. All rights reserved. For over 70 years it has been assumed that scalar wave propagation in (ensembleaveraged) random particulate materials can be characterized by a single effective wavenumber. Here, however, we show that there exist many effective wavenumbers, each contributing to the effective transmitted wave field. Most of these contributions rapidly attenuate away from boundaries, but they make a significant contribution to the reflected and total transmitted field beyond the low-frequency regime. In some cases at least two effective wavenumbers have the same order of attenuation. In these cases a single effective wavenumber does not accurately describe wave propagation even far away from boundaries. We develop an efficient method to calculate all of the contributions to the wave field for the scalar wave equation in two spatial dimensions, and then compare results with numerical finite-difference calculations. This new method is, to the best of the authors' knowledge, the first of its kind to give such accurate predictions across a broad frequency range and for general particle volume fractions

    Identification of miRNA differentially expressed in macrophages exposed to Porphyromonas gingivalis infection

    Full text link
    We analyzed bacterial modulation of miRNAs in bone-marrow- derived macrophages (BMMs) induced by infection with either wild type Porphyromonas gingivalis (Pg) or mutant Pg (∆FimA), through a microarray analysis. TNF-α and IL-10 concentrations in Pg infected BMMs transfected with selected miRNAs were also assessed. The inhibition of mmu-miR-2137 increased the secretion of anti-inflammatory IL-10, while mmu-miR-155-5p decreased TNF-α. In vivo: injecting these miRNAs with Pg in mice reduced the size of the lesion significantly

    Long-term data for endemic frog genera reveal potential conservation crisis in the Bale Mountains, Ethiopia

    Get PDF
    Populations of many frogs have declined alarmingly in recent years, placing nearly one third of the \u3e 6,000 species under threat of extinction. Declines have been attributed largely to habitat loss, environmental degradation and/or infectious diseases such as chytridiomycosis. Many frogs undergo dramatic natural population fluctuations such that long-term data are required to determine population trends without undue influence of stochastic factors. We present long-term quantitative data (individuals encountered per person hour of searching) for four monotypic frog genera endemic to an Afromontane region of exceptional importance but growing conservation concern: one endemic to the Ethiopian highlands (Spinophrynoides osgoodi) and three endemic to the Bale Mountains (Altiphrynoides malcolmi, Balebreviceps hillmani, Ericabatrachus baleensis), collected during 15 field trips to the Bale Mountains between 1971 and 2009. Only a single confirmed sighting of S. osgoodi has been made since 1995. The other three species have also declined, at least locally. E. baleensis appears to have been extirpated at its type locality and at the same site B. hillmani has declined. These declines are in association with substantial habitat degradation caused by a growing human population. Chytrid fungus has been found on several frog species in Bale, although no dead or moribund frogs have been encountered. These results expose an urgent need for more amphibian surveys in the Bale Mountains. Additionally, we argue that detrimental human exploitation must be halted immediately in at least some parts of the Harenna Forest if a conservation crisis is to be averted

    MODIS land cover and LAI Collection 4 product quality across nine sites in the western hemisphere

    Get PDF
    Global maps of land cover and leaf area index (LAI) derived from the Moderate Resolution Imaging Spectrometer (MODIS) reflectance data are an important resource in studies of global change, but errors in these must be characterized and well understood. Product validation requires careful scaling from ground and related measurements to a grain commensurate with MODIS products. We present an updated BigFoot project protocol for developing 25-m validation data layers over 49-km2 study areas. Results from comparisons of MODIS and BigFoot land cover and LAI products at nine contrasting sites are reported. In terms of proportional coverage, MODIS and BigFoot land cover were in close agreement at six sites. The largest differences were at low tree cover evergreen needleleaf sites and at an Arctic tundra site where the MODIS product overestimated woody cover proportions. At low leaf biomass sites there was reasonable agreement between MODIS and BigFoot LAI products, but there was not a particular MODIS LAI algorithm pathway that consistently compared most favorably. At high leaf biomass sites, MODIS LAI was generally overpredicted by a significant amount. For evergreen needleleaf sites, LAI seasonality was exaggerated by MODIS. Our results suggest incremental improvement from Collection 3 to Collection 4 MODIS products, with some remaining problems that need to be addresse

    Epitaxial growth of Bi<sub>12</sub>GeO<sub>20</sub> thin film optical waveguides using excimer laser ablation

    Full text link
    Thin-film optical waveguides of the photorefractive optical material bismuth germanium oxide (Bi12GeO20) have been epitaxially grown onto heated zirconia substrates by excimer laser ablative sputtering. The epitaxial nature and stoichiometry of the films were verified using x-ray diffraction analysis. Waveguide modes were observed for effective refractive indices in close agreement with theoretical predictions

    The strength of negative plant–soil feedback increases from the intraspecific to the interspecific and the functional group level

    Get PDF
    One of the processes that may play a key role in plant species coexistence and ecosystem functioning is plant–soil feedback, the effect of plants on associated soil communities and the resulting feedback on plant performance. Plant–soil feedback at the interspecific level (comparing growth on own soil with growth on soil from different species) has been studied extensively, while plant–soil feedback at the intraspecific level (comparing growth on own soil with growth on soil from different accessions within a species) has only recently gained attention. Very few studies have investigated the direction and strength of feedback among different taxonomic levels, and initial results have been inconclusive, discussing phylogeny, and morphology as possible determinants. To test our hypotheses that the strength of negative feedback on plant performance increases with increasing taxonomic level and that this relationship is explained by morphological similarities, we conducted a greenhouse experiment using species assigned to three taxonomic levels (intraspecific, interspecific, and functional group level). We measured certain fitness‐related aboveground traits and used them along literature‐derived traits to determine the influence of morphological similarities on the strength and direction of the feedback. We found that the average strength of negative feedback increased from the intraspecific over the interspecific to the functional group level. However, individual accessions and species differed in the direction and strength of the feedback. None of our results could be explained by morphological dissimilarities or individual traits. Synthesis. Our results indicate that negative plant–soil feedback is stronger if the involved plants belong to more distantly related species. We conclude that the taxonomic level is an important factor in the maintenance of plant coexistence with plant–soil feedback as a potential stabilizing mechanism and should be addressed explicitly in coexistence research, while the traits considered here seem to play a minor role

    Data-driven approach for creating synthetic electronic medical records

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>New algorithms for disease outbreak detection are being developed to take advantage of full electronic medical records (EMRs) that contain a wealth of patient information. However, due to privacy concerns, even anonymized EMRs cannot be shared among researchers, resulting in great difficulty in comparing the effectiveness of these algorithms. To bridge the gap between novel bio-surveillance algorithms operating on full EMRs and the lack of non-identifiable EMR data, a method for generating complete and synthetic EMRs was developed.</p> <p>Methods</p> <p>This paper describes a novel methodology for generating complete synthetic EMRs both for an outbreak illness of interest (tularemia) and for background records. The method developed has three major steps: 1) synthetic patient identity and basic information generation; 2) identification of care patterns that the synthetic patients would receive based on the information present in real EMR data for similar health problems; 3) adaptation of these care patterns to the synthetic patient population.</p> <p>Results</p> <p>We generated EMRs, including visit records, clinical activity, laboratory orders/results and radiology orders/results for 203 synthetic tularemia outbreak patients. Validation of the records by a medical expert revealed problems in 19% of the records; these were subsequently corrected. We also generated background EMRs for over 3000 patients in the 4-11 yr age group. Validation of those records by a medical expert revealed problems in fewer than 3% of these background patient EMRs and the errors were subsequently rectified.</p> <p>Conclusions</p> <p>A data-driven method was developed for generating fully synthetic EMRs. The method is general and can be applied to any data set that has similar data elements (such as laboratory and radiology orders and results, clinical activity, prescription orders). The pilot synthetic outbreak records were for tularemia but our approach may be adapted to other infectious diseases. The pilot synthetic background records were in the 4-11 year old age group. The adaptations that must be made to the algorithms to produce synthetic background EMRs for other age groups are indicated.</p

    New insights into the genetic diversity of Schistosoma mansoni and S. haematobiumin Yemen

    Get PDF
    The file attached is the Published/publisher’s pdf version of the article.© 2015 Sady et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated
    corecore