22 research outputs found

    Two Pathways Recruit Telomerase to Saccharomyces cerevisiae Telomeres

    Get PDF
    The catalytic subunit of yeast telomerase, Est2p, is a telomere associated throughout most of the cell cycle, while the Est1p subunit binds only in late S/G2 phase, the time of telomerase action. Est2p binding in G1/early S phase requires a specific interaction between telomerase RNA (TLC1) and Ku80p. Here, we show that in four telomerase-deficient strains (cdc13-2, est1Ä, tlc1-SD, and tlc1-BD), Est2p telomere binding was normal in G1/early S phase but reduced to about 40–50% of wild type levels in late S/G2 phase. Est1p telomere association was low in all four strains. Wild type levels of Est2p telomere binding in late S/G2 phase was Est1p-dependent and required that Est1p be both telomere-bound and associated with a stem-bulge region in TLC1 RNA. In three telomerase-deficient strains in which Est1p is not Est2p-associated (tlc1-SD, tlc1-BD, and est2Ä), Est1p was present at normal levels but its telomere binding was very low. When the G1/early S phase and the late S/G2 phase telomerase recruitment pathways were both disrupted, neither Est2p nor Est1p was telomere-associated. We conclude that reduced levels of Est2p and low Est1p telomere binding in late S/G2 phase correlated with an est phenotype, while a WT level of Est2p binding in G1 was not sufficient to maintain telomeres. In addition, even though Cdc13p and Est1p interact by two hybrid, biochemical and genetic criteria, this interaction did not occur unless Est1p was Est2p-associated, suggesting that Est1p comes to the telomere only as part of the holoenzyme. Finally, the G1 and late S/G2 phase pathways for telomerase recruitment are distinct and are likely the only ones that bring telomerase to telomeres in wild-type cells

    Assessing the risk of bias in randomized controlled trials in the field of dentistry indexed in the Lilacs (Literatura Latino-Americana e do Caribe em CiĂȘncias da SaĂșde) database

    Full text link

    Maintenance cost of chiller plants in Hong Kong

    No full text
    2008-2009 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptSelf-fundedPublishe

    Successful engraftment by leukemia initiating cells in adult acute lymphoblastic leukemia after direct intrahepatic injection into unconditioned newborn NOD/SCID mice

    No full text
    Objective: Xenogeneic transplantation has been the gold standard for enumeration of leukemia initiating cells in acute myeloid and lymphoblastic leukemia (ALL). Most transplantation models have required conditioning in which the recipients were either irradiated or treated with chemotherapy prior to injection of human leukemia cells. In this study, we reported an undescribed model in which adult ALL cells were injected into unconditioned newborn nonobese diabetic severe combined immunodeficient mice via an intrahepatic route. Materials and Methods: Bone marrow (BM) and peripheral blood were collected from patients with ALL at diagnosis or relapse. CD34 + selected lymphoblasts or mononuclear cells were transplanted as mentioned previously. Cells were also transplanted into sublethally irradiated adult mice via intravenous route for comparison. Leukemia engraftment was enumerated from mouse BM 6 to 18 weeks after transplantation. Clonality of the engrafting cells was examined based on IGH rearrangement and fluorescent in situ hybridization. Results: Five of 13 ALL samples engrafted into the recipient BM 6 to 18 weeks after transplantation. Engrafted cells recapitulated the immunophenotype and cytogenetic characteristics of the original samples. Engraftment in BM and peripheral blood was significantly correlated. Importantly, there was significant correlation of engraftment between this and the conventional adult nonobese diabetic severe combined immunodeficient mouse model involving irradiation. Conclusion: Our results demonstrated that this unconditioned newborn mouse model could be used for enumeration of leukemia initiating cells in ALL and should be further evaluated. © 2010 ISEH - Society for Hematology and Stem Cells.link_to_subscribed_fulltex
    corecore