1 research outputs found

    Biomarkers Improve Clinical Outcome Predictors of Mortality Following Non-Penetrating Severe Traumatic Brain Injury

    No full text
    This study assessed whether early levels of biomarkers measured in CSF within 24-h of severe TBI would improve the clinical prediction of 6-months mortality. This prospective study conducted at two Level 1 Trauma Centers enrolled adults with severe TBI (GCS a parts per thousand currency sign8) requiring a ventriculostomy as well as control subjects. Ventricular CSF was sampled within 24-h of injury and analyzed for seven candidate biomarkers (UCH-L1, MAP-2, SBDP150, SBDP145, SBDP120, MBP, and S100B). The International Mission on Prognosis and Analysis of Clinical Trials in TBI (IMPACT) scores (Core, Extended, and Lab) were calculated for each patient to determine risk of 6-months mortality. The IMPACT models and biomarkers were assessed alone and in combination. There were 152 patients enrolled, 131 TBI patients and 21 control patients. Thirty six (27 %) patients did not survive to 6 months. Biomarkers were all significantly elevated in TBI versus controls (p < 0.001). Peak levels of UCH-L1, SBDP145, MAP-2, and MBP were significantly higher in non-survivors (p < 0.05). Of the seven biomarkers measured at 12-h post-injury MAP-2 (p = 0.004), UCH-L1 (p = 0.024), and MBP (p = 0.037) had significant unadjusted hazard ratios. Of the seven biomarkers measured at the earliest time within 24-h, MAP-2 (p = 0.002), UCH-L1 (p = 0.016), MBP (p = 0.021), and SBDP145 (0.029) had the most significant elevations. When the IMPACT Extended Model was combined with the biomarkers, MAP-2 contributed most significantly to the survival models with sensitivities of 97-100 %. These data suggest that early levels of MAP-2 in combination with clinical data provide enhanced prognostic capabilities for mortality at 6 months
    corecore