28 research outputs found

    Futuristic Approach to Alternatives

    No full text

    In vitro antiproliferative and apoptosis-inducing properties of a mononuclear copper(II) complex with dppz ligand, in two genotypically different breast cancer cell lines

    No full text
    In the background that there is concerted effort to discover newer metal-based cancer chemotherapeutic agents that could overcome the limitations in cisplatin and that copper, a biocompatible and redox-active metal, offers potential as alternative to cisplatin, the present study was undertaken to investigate the in vitro anti-proliferative properties of the mononuclear copper(II)complex [Cu(L)(diimine)] + where LH = 2-[(2-dimethylaminoethylimino)methyl]phenol and diimine = dipyrido[3,2-a:2',3'-c]phenazine (dppz) using breast cancer cell lines MCF-7 (ER+ve and p53(WT)) and MDA-MB-231(ER-ve and p53(mutant)) when cisplatin was used as positive control. The complex affected the viability of both the cell lines in dose-as well as duration-dependent manner as revealed in the MTT assay. The 24 and 48 h IC50 of the complex were several times lesser than those of cisplatin, and within this huge difference the efficacy of the complex was much superior with MCF-7 cell compared to MDA-MB-231 cell. The cell death was preferentially apoptosis, though necrosis also occurred to a certain extent. These inferences were substantiated by AO/EB fluorescent staining, Hoechst staining, assessment of mitochondrial transmembrane potential, comet assay for DNA damage, DCFH assay for reactive oxygen species (ROS) generation and Western blot of apoptosis-related proteins. Thus, the copper(II) dppz complex under investigation is much more efficient than cisplatin in affecting viability of the breast cancer cells. The underlying mechanism appears to be DNA damage-primed (in view of the known intercalation mode of binding of the complex with DNA) and ROS-associated mitochondria-mediated intrinsic apoptosis to a great extent but necrosis also has a role to a certain extent, which may also be a PARP-mediated cell death independent of apoptosis. Within the purview of this conclusion, the results indicate that the ER and/or p53 genotypes have a bearing on the efficacy of the complex as a cytotoxic agent since the response in the ER-ve and p53(mutant) MDA-MB-231 cell was not so prominent as in ER+ve and p53(WT) MCF-7 cell. Taken together, the complex has been shown to be a potential DNA damaging agent and, in the light of the superiority of the complex over cisplatin, we are further investigating the possibility of targeted nano-delivery of the complex to the tumor cells. When tested on a normal cell, 3T3, Cu(II)dppz was found to affect its viability but at concentrations very high compared to those for the breast cancer cells. Yet, this is a cause of concern and, therefore, we are working out a strategy for targeted delivery of this complex to the cancer cells only

    Mixed ligand copper(II) dicarboxylate complexes: the role of co-ligand hydrophobicity in DNA binding, double-strand DNA cleavage, protein binding and cytotoxicity

    No full text
    A few water soluble mixed ligand copper(II) complexes of the type [Cu(bimda)(diimine)] 1-5, where bimda is N-benzyliminodiacetic acid and diimine is 2,2'-bipyridine (bpy, 1) or 1,10-phenanthroline (phen, 2) or 5,6-dimethyl-1,10-phenanthroline (5,6-dmp, 3) or 3,4,7,8-tetramethyl-1,10-phenanthroline (3,4,7,8-tmp, 4) and dipyrido[3,2-d: 2', 3'-f] quinoxaline (dpq, 5), have been successfully isolated and characterized by elemental analysis and other spectral techniques. The coordination geometry around copper(II) in 2 is described as distorted square based pyramidal while that in 3 is described as square pyramidal. Absorption spectral titrations and competitive DNA binding studies reveal that the intrinsic DNA binding affinity of the complexes depends upon the diimine co-ligand, dpq (5) > 3,4,7,8-tmp (4) > 5,6-dmp (3) > phen (2) > bpy (1). The phen and dpq co-ligands are involved in the p-stacking interaction with DNA base pairs while the 3,4,7,8-tmp/5,6-dmp and bpy co-ligands are involved in respectively hydrophobic and surface mode of binding with DNA. The small enhancement in the relative viscosity of DNA upon binding to 1-5 supports the DNA binding modes proposed. Interestingly, 3 and 4 are selective in exhibiting a positive induced CD band (ICD) upon binding to DNA suggesting that they induce B to A conformational change. In contrast, 2 and 5 show CD responses which reveal their involvement in strong DNA binding. The complexes 2-4 are unique in displaying prominent double-strand DNA cleavage while 1 effects only single-strand DNA cleavage, and their ability to cleave DNA in the absence of an activator varies as 5 > 4 > 3 > 2 > 1. Also, all the complexes exhibit oxidative double-strand DNA cleavage activity in the presence of ascorbic acid, which varies as 5 > 4 > 3 > 2 > 1. The ability of the complexes to bind and cleave the protein BSA varies in the order 4 > 3 > 5 > 2 > 1. Interestingly, 3 and 4 cleave the protein non-specifically in the presence of H2O2 as an activator suggesting that they can act also as chemical proteases. It is remarkable that 2-5 exhibit cytotoxicity against human breast cancer cell lines (MCF-7) with potency higher than the widely used drug cisplatin indicating that they have the potential to act as effective anticancer drugs in a time dependent manner. The morphological assessment data obtained by using Hoechst 33258 staining reveal that 3 and 4 induce apoptosis much more effectively than other complexes. Also, the alkaline single-cell gel electrophoresis study (comet assay) suggests that the same complexes induce DNA fragmentation more efficiently than others
    corecore