11 research outputs found

    Stress-Mediated Enhancement of Ionic Conductivity in Fast-Ion Conductors

    Full text link
    Finding solid-state electrolytes with high ionic conductivity near room temperature is an important prerequisite for developing all-solid-state electrochemical batteries. Here, we investigate the effects of point defects (vacancies) and biaxial stress on the superionic properties of fast-ion conductors (represented by the archetypal compounds CaF2, Li-rich antiperovskite Li3OCl, and AgI) by using classical molecular dynamics and first-principles simulation methods. We find that the critical superionic temperature of all analyzed families of fast-ion conductors can be reduced by several hundreds of degrees through the application of relatively small biaxial stresses (|σ| ≤ 1 GPa) on slightly defective samples (cv ∼ 1%). In AgI, we show that superionicity can be triggered at room temperature by applying a moderate compressive biaxial stress of ∼1 GPa. In this case, we reveal the existence of a σ-induced order-disorder phase transition involving sizable displacements of all the ions with respect to the equilibrium lattice that occurs prior to the stabilization of the superionic state. In CaF2 and Li3OCl, by contrast, we find that tensile biaxial stress (σ < 0) favors ionic conductivity as due to an effective increase of the volume available to interstitial ions, which lowers the formation energy of Frenkel pair defects. Our findings provide valuable microscopic insight into the behavior of fast-ion conductors under mechanical constraints, showing that biaxial stress (or, conversely, epitaxial strain) can be used as an effective means to enhance ionic conductivity

    Influence of lattice dynamics on lithium-ion conductivity: A first-principles study

    Full text link

    Room-temperature mechanocaloric effects in lithium-based superionic materials

    Full text link
    Mechanocaloric materials undergo sizable temperature changes during stress-induced phase transformations and hence are highly sought after for solid-state cooling applications. Most known mechanocaloric materials, however, operate at non-ambient temperatures and involve first-order structural transitions that pose practical cyclability issues. Here, we demonstrate large room-temperature mechanocaloric effects in the absence of any structural phase transformation in the fast-ion conductor Li3N (|ΔS| ~ 25 J K−1 kg−1 and |ΔT| ~ 5 K). Depending on whether the applied stress is hydrostatic or uniaxial the resulting caloric effect is either direct (ΔT > 0) or inverse (ΔT < 0). The dual caloric response of Li3N is due exclusively to stress-induced variations on its ionic conductivity, which entail large entropy and volume changes that are fully reversible. Our work should motivate the search of large and dual mechanocaloric effects in a wide variety of superionic materials already employed in electrochemical devices

    Mechanocaloric effects in superionic thin films from atomistic simulations

    Full text link
    Solid-state cooling is an energy-efficient and scalable refrigeration technology that exploits the adiabatic variation of a crystalline order parameter under an external field (electric, magnetic, or mechanic). The mechanocaloric effect bears one of the greatest cooling potentials in terms of energy efficiency owing to its large available latent heat. Here we show that giant mechanocaloric effects occur in thin films of well-known families of fast-ion conductors, namely Li-rich (Li3OCl) and type-I (AgI), an abundant class of materials that routinely are employed in electrochemistry cells. Our simulations reveal that at room temperature AgI undergoes an adiabatic temperature shift of 38 K under a biaxial stress of 1 GPa. Likewise, Li3OCl displays a cooling capacity of 9 K under similar mechanical conditions although at a considerably higher temperature. We also show that ionic vacancies have a detrimental effect on the cooling performance of superionic thin films. Our findings should motivate experimental mechanocaloric searches in a wide variety of already known superionic materials

    High-Pressure Phase Diagram and Superionicity of Alkaline Earth Metal Difluorides

    Full text link
    We study the high-pressure high-temperature phase diagram and superionicity of alkaline-earth metal (AEM) difluorides (AF2, A = Ca, Sr, Ba) with first-principles simulation methods. We find that the superionic behavior of SrF2 and BaF2 at high pressures differ appreciably from that previously reported for CaF2 [Phys. Rev. Lett. 113, 235902 (2014)]. Specifically, the critical superionic temperature of SrF2 and BaF2 in the low-pressure cubic fluorite phase is not reduced by effect of compression, and the corresponding high-pressure orthorhombic contunnite phases becomes superionic at elevated temperatures. We get valuable microscopic insights into the superionic features of AEM difluoridesin both the cubic fluorite and orthorhombic contunnite phases by means of \emph{ab initio} molecular dynamics simulations. We rationalize our findings on the structural and superionic behavior of AF2 compounds interms of simple ionic radii arguments, and generalize them across the whole series of AEM dihalides (AB2, A = Mg, Ca, Sr, Ba and B = F, Cl, Br, I) under pressure

    Copper Diffusion Rates and Hopping Pathways in Superionic Cu2Se

    Full text link
    The ultra-low thermal conductivity of Cu2Se is well established, but so far there is no consensus on the underlying mechanism. One proposal is that the fast-ionic diffusion of copper suppresses the acoustic phonons. The diffusion coefficients reported previously, however, differ by two orders of magnitude between the various studies and it remains unclear whether the diffusion is fast enough to impact the heat-bearing phonons. Here, a two-fold approach is used to accurately re-determine the diffusion rates. Ab-initio molecular dynamics simulations, incorporating landmark analysis techniques, were closely compared with experimental quasielastic/inelastic neutron scattering. Reasonable agreement was found between these approaches, consistent with a diffusion coefficient of 3.1 ± 1.3× 10−5 cm2.s−1 at 675 K and an activation barrier of 140 ± 60 meV. The hopping mechanism includes short 2 Å hops between tetrahedral and interstitial octahedral sites. This process forms dynamic Frenkel defects. Despite the latter processes, there is no major loss of the phonon mode intensity in the superionic state, and there is no strong correlation between the phonon spectra and the increased diffusion rates. Instead, intrinsic anharmonic phonon interactions appear to dictate the thermal conductivity above and below the superionic transition, and there is only subtle mode broadening associated with the monoclinic-cubic structural transition point, with the phonon density-of-states remaining almost constant at higher temperatures
    corecore