5 research outputs found

    PhoP: A Missing Piece in the Intricate Puzzle of Mycobacterium tuberculosis Virulence

    Get PDF
    Inactivation of the transcriptional regulator PhoP results in Mycobacterium tuberculosis attenuation. Preclinical testing has shown that attenuated M. tuberculosis phoP mutants hold promise as safe and effective live vaccine candidates. We focused this study to decipher the virulence networks regulated by PhoP. A combined transcriptomic and proteomic analysis revealed that PhoP controls a variety of functions including: hypoxia response through DosR crosstalking, respiratory metabolism, secretion of the major T-cell antigen ESAT-6, stress response, synthesis of pathogenic lipids and the M. tuberculosis persistence through transcriptional regulation of the enzyme isocitrate lyase. We also demonstrate that the M. tuberculosis phoP mutant SO2 exhibits an antigenic capacity similar to that of the BCG vaccine. Finally, we provide evidence that the SO2 mutant persists better in mouse organs than BCG. Altogether, these findings indicate that PhoP orchestrates a variety of functions implicated in M. tuberculosis virulence and persistence, making phoP mutants promising vaccine candidates

    Contrasting Transcriptional Responses of a Virulent and an Attenuated Strain of Mycobacterium tuberculosis Infecting Macrophages

    Get PDF
    Along with the recent identification of single nucleotide polymorphisms in H37Ra when compared to H37Rv, our demonstration of differential expression of PhoP-regulated and ESX-1 region-related genes during macrophage infection further highlights the significance of these genes in the attenuation of H37Ra
    corecore