21 research outputs found

    Lattice Boltzmann simulations of soft matter systems

    Full text link
    This article concerns numerical simulations of the dynamics of particles immersed in a continuum solvent. As prototypical systems, we consider colloidal dispersions of spherical particles and solutions of uncharged polymers. After a brief explanation of the concept of hydrodynamic interactions, we give a general overview over the various simulation methods that have been developed to cope with the resulting computational problems. We then focus on the approach we have developed, which couples a system of particles to a lattice Boltzmann model representing the solvent degrees of freedom. The standard D3Q19 lattice Boltzmann model is derived and explained in depth, followed by a detailed discussion of complementary methods for the coupling of solvent and solute. Colloidal dispersions are best described in terms of extended particles with appropriate boundary conditions at the surfaces, while particles with internal degrees of freedom are easier to simulate as an arrangement of mass points with frictional coupling to the solvent. In both cases, particular care has been taken to simulate thermal fluctuations in a consistent way. The usefulness of this methodology is illustrated by studies from our own research, where the dynamics of colloidal and polymeric systems has been investigated in both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures, 76 page

    Application of the Lattice Boltzmann/Lattice Gas Technique to Multi-Fluid Flow in Porous Media

    No full text
    The lattice Boltzmann approach to modeling fluid flow provides an efficient and reliable method for solving the Navier-Stokes equations and studying multi-fluid flow problems. In this paper, we report state of the art capabilities of our lattice Boltzmann simulator for single- and two-fluid flows in two- and three-dimensional problems. We review the development of the code and present some of the latest results. Some of the flexibility available in the model includes arbitrary pore space descriptions, wettability effects, surface tension relations, and chemical reactivity. Simulations of two-fluid flow through a digitized micromodel geometry, and through a high resolution, digitized sample of Berea sandstone are presented. Relative permeability as a function of wettability and capillary number is discussed. Integration of the lattice Boltzmann approach into larger scale models to build a more powerful tool for analyzing constitutive behavior is considered

    The impact of drainage displacement patterns and Haines jumps on CO2 storage efficiency

    No full text
    Injection of CO2 deep underground into porous rocks, such as saline aquifers, appears to be a promising tool for reducing CO2 emissions and the consequent climate change. During this process CO2 displaces brine from individual pores and the sequence in which this happens determines the efficiency with which the rock is filled with CO2 at the large scale. At the pore scale, displacements are controlled by the balance of capillary, viscous and inertial forces. We simulate this process by a numerical technique, multi-GPU Lattice Boltzmann, using X-ray images of the rock pores. The simulations show the three types of fluid displacement patterns, at the larger scale, that have been previously observed in both experiments and simulations: viscous fingering, capillary fingering and stable displacement. Here we examine the impact of the patterns on storage efficiency and then focus on slow flows, where displacements at the pore scale typically happen by sudden jumps in the position of the interface between brine and CO2, Haines jumps. During these jumps, the fluid in surrounding pores can rearrange in a way that prevent later displacements in nearby pores, potentially reducing the efficiency with which the CO2 fills the total available volume in the rock
    corecore