132 research outputs found
Linkage of Type I Interferon Activity and TNF-Alpha Levels in Serum with Sarcoidosis Manifestations and Ancestry
BACKGROUND: Both type I interferon (IFN), also known as IFN-α and tumor necrosis factor alpha (TNF-α) have been implicated in the pathogenesis of sarcoidosis. We investigated serum levels of these cytokines in a large multi-ancestral sarcoidosis population to determine correlations between cytokine levels and disease phenotypes. METHODS: We studied serum samples from 98 patients with sarcoidosis, including 71 patients of African-American ancestry and 27 patients of European-American ancestry. Serum type I IFN was measured using a sensitive reporter cell assay and serum TNF-α was measured using a commercial ELISA kit. Clinical data including presence or absence of neurologic, cardiac, and severe pulmonary manifestations of sarcoidosis were abstracted from medical records. Twenty age-matched non-autoimmune controls were also studied from each ancestral background. Differences in cytokine levels between groups were analyzed with Mann-Whitney U test, and correlations were assessed using Spearman's rho. Multivariate logistic regression models were used to detect associations between cytokines and clinical manifestations. RESULTS: Significant differences in cytokine levels were observed between African- and European-American patients with sarcoidosis. In African-Americans, serum TNF-α levels were significantly higher relative to matched controls (P = 0.039), and patients with neurologic disease had significantly higher TNF-α than patients lacking this manifestation (P = 0.022). In European-Americans, serum type I IFN activity was higher in sarcoidosis cases as compared to matched controls, and patients with extra-pulmonary disease represented a high serum IFN subgroup (P = 0.0032). None of the associations observed were shared between the two ancestral groups. CONCLUSIONS: Our data indicate that significant associations between serum levels of TNF-α and type I IFN and clinical manifestations exist in a sarcoidosis cohort that differ significantly by self-reported ancestry. In each ancestral background, the cytokine elevated in patients with sarcoidosis was also associated with a particular disease phenotype. These findings may relate to ancestral differences in the molecular pathogenesis of this heterogeneous disease
Fermi Gamma-ray Imaging of a Radio Galaxy
The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating
from the giant radio lobes of the radio galaxy Centaurus A. The resolved
gamma-ray image shows the lobes clearly separated from the central active
source. In contrast to all other active galaxies detected so far in high-energy
gamma-rays, the lobe flux constitutes a considerable portion (>1/2) of the
total source emission. The gamma-ray emission from the lobes is interpreted as
inverse Compton scattered relic radiation from the cosmic microwave background
(CMB), with additional contribution at higher energies from the
infrared-to-optical extragalactic background light (EBL). These measurements
provide gamma-ray constraints on the magnetic field and particle energy content
in radio galaxy lobes, and a promising method to probe the cosmic relic photon
fields.Comment: 27 pages, includes Supplementary Online Material; corresponding
authors: C.C. Cheung, Y. Fukazawa, J. Knodlseder, L. Stawar
Digital clubbing in tuberculosis – relationship to HIV infection, extent of disease and hypoalbuminemia
BACKGROUND: Digital clubbing is a sign of chest disease known since the time of Hippocrates. Its association with tuberculosis (TB) has not been well studied, particularly in Africa where TB is common. The prevalence of clubbing in patients with pulmonary TB and its association with Human Immunodeficiency Virus (HIV), severity of disease, and nutritional status was assessed. METHODS: A cross-sectional study was carried out among patients with smear-positive TB recruited consecutively from the medical and TB wards and outpatient clinics at a public hospital in Uganda. The presence of clubbing was assessed by clinical signs and measurement of the ratio of the distal and inter-phalangeal diameters (DPD/IPD) of both index fingers. Clubbing was defined as a ratio > 1.0. Chest radiograph, serum albumin and HIV testing were done. RESULTS: Two hundred patients (82% HIV-infected) participated; 34% had clubbing by clinical criteria whilst 30% had clubbing based on DPD/IPD ratio. Smear grade, extensive or cavitary disease, early versus late HIV disease, and hypoalbuminemia were not associated with clubbing. Clubbing was more common among patients with a lower Karnofsky performance scale score or with prior TB. CONCLUSION: Clubbing occurs in up to one-third of Ugandan patients with pulmonary TB. Clubbing was not associated with stage of HIV infection, extensive disease or hypoalbuminemia
Hall Measurements on Carbon Nanotube Paper Modified With Electroless Deposited Platinum
Carbon nanotube paper, sometimes referred to as bucky paper, is a random arrangement of carbon nanotubes meshed into a single robust structure, which can be manipulated with relative ease. Multi-walled carbon nanotubes were used to make the nanotube paper, and were subsequently modified with platinum using an electroless deposition method based on substrate enhanced electroless deposition. This involves the use of a sacrificial metal substrate that undergoes electro-dissolution while the platinum metal deposits out of solution onto the nanotube paper via a galvanic displacement reaction. The samples were characterized using SEM/EDS, and Hall-effect measurements. The SEM/EDS analysis clearly revealed deposits of platinum (Pt) distributed over the nanotube paper surface, and the qualitative elemental analysis revealed co-deposition of other elements from the metal substrates used. When stainless steel was used as sacrificial metal a large degree of Pt contamination with various other metals was observed. Whereas when pure sacrificial metals were used bimetallic Pt clusters resulted. The co-deposition of a bimetallic system upon carbon nanotubes was a function of the metal type and the time of exposure. Hall-effect measurements revealed some interesting fluctuations in sheet carrier density and the dominant carrier switched from N- to P-type when Pt was deposited onto the nanotube paper. Perspectives on the use of the nanotube paper as a replacement to traditional carbon cloth in water electrolysis systems are also discussed
Mitochondrial calcium uniporter Mcu controls excitotoxicity and is transcriptionally repressed by neuroprotective nuclear calcium signals
The recent identification of the mitochondrial Ca(2+) uniporter gene (Mcu/Ccdc109a) has enabled us to address its role, and that of mitochondrial Ca(2+) uptake, in neuronal excitotoxicity. Here we show that exogenously expressed Mcu is mitochondrially localized and increases mitochondrial Ca(2+) levels following NMDA receptor activation, leading to increased mitochondrial membrane depolarization and excitotoxic cell death. Knockdown of endogenous Mcu expression reduces NMDA-induced increases in mitochondrial Ca(2+), resulting in lower levels of mitochondrial depolarization and resistance to excitotoxicity. Mcu is subject to dynamic regulation as part of an activity-dependent adaptive mechanism that limits mitochondrial Ca(2+) overload when cytoplasmic Ca(2+) levels are high. Specifically, synaptic activity transcriptionally represses Mcu, via a mechanism involving the nuclear Ca(2+) and CaM kinase-mediated induction of Npas4, resulting in the inhibition of NMDA receptor-induced mitochondrial Ca(2+) uptake and preventing excitotoxic death. This establishes Mcu and the pathways regulating its expression as important determinants of excitotoxicity, which may represent therapeutic targets for excitotoxic disorders
Childhood sarcoidosis: A rare but fascinating disorder
Childhood sarcoidosis is a rare multisystemic granulomatous disorder of unknown etiology. In the pediatric series reported from the southeastern United States, sarcoidosis had a higher incidence among African Americans. Most reported childhood cases have occurred in patients aged 13–15 years. Macrophages bearing an increased expression of major histocompatibility class (MHC) II molecules most likely initiate the inflammatory response of sarcoidosis by presenting an unidentified antigen to CD4+ Th (helper-inducer) lymphocytes. A persistent, poorly degradable antigen driven cell-mediated immune response leads to a cytokine cascade, to granuloma formation, and eventually to fibrosis. Frequently observed immunologic features include depression of cutaneous delayed-type hypersensitivity and a heightened helper T cell type 1 (Th1) immune response at sites of disease. Circulating immune complexes, along with signs of B cell hyperactivity, may also be found. The clinical presentation can vary greatly depending upon the organs involved and age of the patient. Two distinct forms of sarcoidosis exist in children. Older children usually present with a multisystem disease similar to the adult manifestations, with frequent hilar lymphadenopathy and pulmonary infiltrations. Early-onset sarcoidosis is a unique form of the disease characterized by the triad of rash, uveitis, and arthritis in children presenting before four years of age. The diagnosis of sarcoidosis is confirmed by demonstrating a typical noncaseating granuloma on a biopsy specimen. Other granulmatous diseases should be reasonably excluded. The current therapy of choice for sarcoidosis in children with multisystem involvement is oral corticosteroids. Methotrexate given orally in low doses has been effective, safe and steroid sparing in some patients. Alternative immunosuppressive agents, such as azathioprine, cyclophosphamide, chlorambucil, and cyclosporine, have been tried in adult cases of sarcoidosis with questionable efficacy. The high toxicity profile of these agents, including an increased risk of lymphoproliferative disorders and carcinomas, has limited their use to patients with severe disease refractory to other agents. Successful steroid sparing treatment with mycophenolate mofetil was described in an adolescent with renal-limited sarcoidosis complicated by renal failure. Novel treatment strategies for sarcoidosis have been developed including the use of TNF-alpha inhibitors, such as infliximab. The long-term course and prognosis is not well established in childhood sarcoidosis, but it appears to be poorer in early-onset disease
Childhood emotional trauma and cyberbullying perpetration among emerging adults: a multiple mediation model of the role of problematic social media use and psychopathology
Research suggests that a small minority of social media users experience problems as a result of their online use. The purpose of the present study was to examine the association of cyberbullying perpetration and problematic social media use with childhood emotional trauma, Cluster B (narcissistic, histrionic, antisocial, and borderline) personality traits, dissociative experiences (DEs), depression, and self-esteem in a nonclinical undergraduate sample. A total of 344 university students volunteered to complete a questionnaire that included measures on the aforementioned dimensions. Thirty-eight percent of the participants had emotional neglect and 27% had emotional abuse, while 44% of them demonstrated at least one cyberbullying perpetration behavior. Results indicated that cyberbullying perpetrators had higher scores on problematic social media use, dissociative experiences, Cluster B traits, depression and childhood emotional trauma, and lower on self-esteem. Path analysis demonstrated that, while adjusting for gender and age, childhood emotional trauma was directly and indirectly associated with cyberbullying perpetration via Cluster B traits. Moreover, depression and dissociation were directly associated with problematic social media use. The findings of this study emphasize the important direct role of childhood emotional trauma and pathological personality traits on cyberbullying perpetration
Modeling of negative Poisson’s ratio (auxetic) crystalline cellulose Iβ
Energy minimizations for unstretched and stretched cellulose models using an all-atom empirical force field (Molecular Mechanics) have been performed to investigate the mechanism for auxetic (negative Poisson’s ratio) response in crystalline cellulose Iβ from kraft cooked Norway spruce. An initial investigation to identify an appropriate force field led to a study of the structure and elastic constants from models employing the CVFF force field. Negative values of on-axis Poisson’s ratios nu31 and nu13 in the x1-x3 plane containing the chain direction (x3) were realized in energy minimizations employing a stress perpendicular to the hydrogen-bonded cellobiose sheets to simulate swelling in this direction due to the kraft cooking process. Energy minimizations of structural evolution due to stretching along the x3 chain direction of the ‘swollen’ (kraft cooked) model identified chain rotation about the chain axis combined with inextensible secondary bonds as the most likely mechanism for auxetic response
Extracellular Superoxide Dismutase Protects Histoplasma Yeast Cells from Host-Derived Oxidative Stress
In order to establish infections within the mammalian host, pathogens must protect themselves against toxic reactive oxygen species produced by phagocytes of the immune system. The fungal pathogen Histoplasma capsulatum infects both neutrophils and macrophages but the mechanisms enabling Histoplasma yeasts to survive in these phagocytes have not been fully elucidated. We show that Histoplasma yeasts produce a superoxide dismutase (Sod3) and direct it to the extracellular environment via N-terminal and C-terminal signals which promote its secretion and association with the yeast cell surface. This localization permits Sod3 to protect yeasts specifically from exogenous superoxide whereas amelioration of endogenous reactive oxygen depends on intracellular dismutases such as Sod1. While infection of resting macrophages by Histoplasma does not stimulate the phagocyte oxidative burst, interaction with polymorphonuclear leukocytes (PMNs) and cytokine-activated macrophages triggers production of reactive oxygen species (ROS). Histoplasma yeasts producing Sod3 survive co-incubation with these phagocytes but yeasts lacking Sod3 are rapidly eliminated through oxidative killing similar to the effect of phagocytes on Candida albicans yeasts. The protection provided by Sod3 against host-derived ROS extends in vivo. Without Sod3, Histoplasma yeasts are attenuated in their ability to establish respiratory infections and are rapidly cleared with the onset of adaptive immunity. The virulence of Sod3-deficient yeasts is restored in murine hosts unable to produce superoxide due to loss of the NADPH-oxidase function. These results demonstrate that phagocyte-produced ROS contributes to the immune response to Histoplasma and that Sod3 facilitates Histoplasma pathogenesis by detoxifying host-derived reactive oxygen thereby enabling Histoplasma survival
Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance.
Insulin resistance is a key mediator of obesity-related cardiometabolic disease, yet the mechanisms underlying this link remain obscure. Using an integrative genomic approach, we identify 53 genomic regions associated with insulin resistance phenotypes (higher fasting insulin levels adjusted for BMI, lower HDL cholesterol levels and higher triglyceride levels) and provide evidence that their link with higher cardiometabolic risk is underpinned by an association with lower adipose mass in peripheral compartments. Using these 53 loci, we show a polygenic contribution to familial partial lipodystrophy type 1, a severe form of insulin resistance, and highlight shared molecular mechanisms in common/mild and rare/severe insulin resistance. Population-level genetic analyses combined with experiments in cellular models implicate CCDC92, DNAH10 and L3MBTL3 as previously unrecognized molecules influencing adipocyte differentiation. Our findings support the notion that limited storage capacity of peripheral adipose tissue is an important etiological component in insulin-resistant cardiometabolic disease and highlight genes and mechanisms underpinning this link.This study was funded by the UK Medical Research Council through grants MC_UU_12015/1, MC_PC_13046, MC_PC_13048 and MR/L00002/1. This work was supported by the MRC Metabolic Diseases Unit (MC_UU_12012/5) and the Cambridge NIHR Biomedical Research Centre and EU/EFPIA Innovative Medicines Initiative Joint Undertaking (EMIF grant 115372). Funding for the InterAct project was provided by the EU FP6 program (grant LSHM_CT_2006_037197). This work was funded, in part, through an EFSD Rising Star award to R.A.S. supported by Novo Nordisk. D.B.S. is supported by Wellcome Trust grant 107064. M.I.M. is a Wellcome Trust Senior Investigator and is supported by the following grants from the Wellcome Trust: 090532 and 098381. M.v.d.B. is supported by a Novo Nordisk postdoctoral fellowship run in partnership with the University of Oxford. I.B. is supported by Wellcome Trust grant WT098051. S.O'R. acknowledges funding from the Wellcome Trust (Wellcome Trust Senior Investigator Award 095515/Z/11/Z and Wellcome Trust Strategic Award 100574/Z/12/Z)
- …