21 research outputs found

    Genetically encoded intrabody sensors report the interaction and trafficking of β-arrestin 1 upon activation of G protein-coupled receptors

    Get PDF
    Agonist stimulation of G protein-coupled receptors (GPCRs) typically leads to phosphorylation of GPCRs and binding to multifunctional proteins called β-arrestins (βarrs). The GPCR-βarr interaction critically contributes to GPCR desensitization, endocytosis, and downstream signaling, and GPCR-βarr complex formation can be used as a generic readout of GPCR and βarr activation. Although several methods are currently available to monitor GPCR-βarr interactions, additional sensors to visualize them may expand the toolbox and complement existing methods. We have previously described antibody fragments (FABs) that recognize activated βarr1 upon its interaction with the vasopressin V2 receptor C-terminal phosphopeptide (V2Rpp). Here, we demonstrate that these FABs efficiently report the formation of a GPCR-βarr1 complex for a broad set of chimeric GPCRs harboring the V2R C terminus. We adapted these FABs to an intrabody format by converting them to single-chain variable fragments (ScFvs) and used them to monitor the localization and trafficking of βarr1 in live cells. We observed that upon agonist simulation of cells expressing chimeric GPCRs, these intrabodies first translocate to the cell surface, followed by trafficking into intracellular vesicles. The translocation pattern of intrabodies mirrored that of βarr1, and the intrabodies co-localized with βarr1 at the cell surface and in intracellular vesicles. Interestingly, we discovered that intrabody sensors can also report βarr1 recruitment and trafficking for several unmodified GPCRs. Our characterization of intrabody sensors for βarr1 recruitment and trafficking expands currently available approaches to visualize GPCR-βarr1 binding, which may help decipher additional aspects of GPCR signaling and regulation

    Rectification of energy transport in nonlinear metamaterials via ratchets

    No full text
    The presence of discrete breathers (DBs) has already been described in nonlinear photonic materials, such as ferroelectrics and metamaterials (MMs) by the Klein-Gordon (K-G) approach. Rectification of energy transport in MMs in the presence of an appropriate external field is studied via symmetry breaking leading to directed energy transport or ratchet behaviour. Based on the earlier development of the K-G equation in a MM system with a split-ring resonator for antenna applications, a theoretical model for current density is worked out by symmetry analysis and its violation to characterize the ratchet effect. The time-averaged current shows interesting results against phase shift in the ac driver. These data are further related to various parameters, such as coupling and damping in the system. For MMs, this opens a new application for rectification using ratchets

    Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial

    No full text
    Background: Artemisinin and partner-drug resistance in Plasmodium falciparum are major threats to malaria control and elimination. Triple artemisinin-based combination therapies (TACTs), which combine existing co-formulated ACTs with a second partner drug that is slowly eliminated, might provide effective treatment and delay emergence of antimalarial drug resistance. Methods: In this multicentre, open-label, randomised trial, we recruited patients with uncomplicated P falciparum malaria at 18 hospitals and health clinics in eight countries. Eligible patients were aged 2–65 years, with acute, uncomplicated P falciparum malaria alone or mixed with non-falciparum species, and a temperature of 37·5°C or higher, or a history of fever in the past 24 h. Patients were randomly assigned (1:1) to one of two treatments using block randomisation, depending on their location: in Thailand, Cambodia, Vietnam, and Myanmar patients were assigned to either dihydroartemisinin–piperaquine or dihydroartemisinin–piperaquine plus mefloquine; at three sites in Cambodia they were assigned to either artesunate–mefloquine or dihydroartemisinin–piperaquine plus mefloquine; and in Laos, Myanmar, Bangladesh, India, and the Democratic Republic of the Congo they were assigned to either artemether–lumefantrine or artemether–lumefantrine plus amodiaquine. All drugs were administered orally and doses varied by drug combination and site. Patients were followed-up weekly for 42 days. The primary endpoint was efficacy, defined by 42-day PCR-corrected adequate clinical and parasitological response. Primary analysis was by intention to treat. A detailed assessment of safety and tolerability of the study drugs was done in all patients randomly assigned to treatment. This study is registered at ClinicalTrials.gov, NCT02453308, and is complete. Findings: Between Aug 7, 2015, and Feb 8, 2018, 1100 patients were given either dihydroartemisinin–piperaquine (183 [17%]), dihydroartemisinin–piperaquine plus mefloquine (269 [25%]), artesunate–mefloquine (73 [7%]), artemether–lumefantrine (289 [26%]), or artemether–lumefantrine plus amodiaquine (286 [26%]). The median age was 23 years (IQR 13 to 34) and 854 (78%) of 1100 patients were male. In Cambodia, Thailand, and Vietnam the 42-day PCR-corrected efficacy after dihydroartemisinin–piperaquine plus mefloquine was 98% (149 of 152; 95% CI 94 to 100) and after dihydroartemisinin–piperaquine was 48% (67 of 141; 95% CI 39 to 56; risk difference 51%, 95% CI 42 to 59; p Interpretation: Dihydroartemisinin–piperaquine plus mefloquine and artemether–lumefantrine plus amodiaquine TACTs are efficacious, well tolerated, and safe treatments of uncomplicated P falciparum malaria, including in areas with artemisinin and ACT partner-drug resistance.</br
    corecore