2 research outputs found

    Spatial Patterns in Herbivory on a Coral Reef Are Influenced by Structural Complexity but Not by Algal Traits

    Get PDF
    Background: Patterns of herbivory can alter the spatial structure of ecosystems, with important consequences for ecosystem functions and biodiversity. While the factors that drive spatial patterns in herbivory in terrestrial systems are well established, comparatively less is known about what influences the distribution of herbivory in coral reefs. Methodology and Principal Findings: We quantified spatial patterns of macroalgal consumption in a cross-section of Ningaloo Reef (Western Australia). We used a combination of descriptive and experimental approaches to assess the influence of multiple macroalgal traits and structural complexity in establishing the observed spatial patterns in macroalgal herbivory, and to identify potential feedback mechanisms between herbivory and macroalgal nutritional quality. Spatial patterns in macroalgal consumption were best explained by differences in structural complexity among habitats. The biomass of herbivorous fish, and rates of herbivory were always greater in the structurally-complex coral-dominated outer reef and reef flat habitats, which were also characterised by high biomass of herbivorous fish, low cover and biomass of macroalgae and the presence of unpalatable algae species. Macroalgal consumption decreased to undetectable levels within 75 m of structurally-complex reef habitat, and algae were most abundant in the structurally-simple lagoon habitats, which were also characterised by the presence of the most palatable algae species. In contrast to terrestrial ecosystems, herbivory patterns were not influenced by the distribution, productivity or nutritional quality of resources (macroalgae), and we found no evidence of a positive feedback between macroalgal consumption and the nitrogen content of algae. Significance: This study highlights the importance of seascape-scale patterns in structural complexity in determining spatial patterns of macroalgal consumption by fish. Given the importance of herbivory in maintaining the ability of coral reefs to reorganise and retain ecosystem functions following disturbance, structural complexity emerges as a critical feature that is essential for the healthy functioning of these ecosystems

    Impact of CT attenuation correction on the viability pattern assessed by (99m)Tc-tetrofosmin SPECT/ (18)F-FDG PET

    Full text link
    SPECT myocardial perfusion imaging (MPI) is commonly used for comprehensive interpretation of metabolic PET FDG imaging in ischemic dysfunctional myocardium. We evaluated the difference in scan interpretation introduced by CT attenuation correction (CTAC) of SPECT MPI in patients undergoing viability characterization by (99m)Tc SPECT MPI/PET FDG. In 46 consecutive patients (mean age 64, range 36-83 years) with dysfunctional myocardium, we analyzed viability from combined SPECT MPI and PET FDG scanning without attenuation correction (NC) and with CTAC for SPECT MPI. FDG uptake was classified in groups of percent uptake using the segment with maximum tracer in SPECT perfusion uptake as reference. Viability patterns were categorized as normal, mismatch, mild match and scar by relative comparison of SPECT and PET. Applying CTAC introduced a different reference segment for the normalization of PET FDG study in 57% of cases. As a result, the flow-metabolism pattern changed in 28% of segments, yielding a normal, mismatch, mild match and scar pattern in 462, 150, 123, and 47 segments with NC and 553, 86, 108, and 35 with CTAC, respectively (P = 0.001). Thus, by introducing CTAC for SPECT MPI 25% of segments originally classified as scar were reclassified and the number of normal segments increased by 20%. Introducing CTAC decreased by 54% the number of patients with possible indication for revascularization, from 26/46 to 12/46 (P < 0.001). Different interpretation of myocardial viability can be observed when using CTAC instead of NC SPECT MPI as reference for PET FDG scans
    corecore