63 research outputs found

    Dose optimization for the MRI-accelerator:IMRT in the presence of a magnetic field

    No full text
    \u3cp\u3eA combined system of a 6 MV linear accelerator and a 1.5 T MRI scanner is currently being developed. In this system, the patient will be irradiated in the presence of a 1.5 T magnetic field. This causes a strong dose increase at tissue-air interfaces. Around air cavities in the patient, these effects may become problematic. Homogeneous dose distributions can be obtained around regularly shaped symmetrical cavities using opposing beams. However, for more irregularly shaped cavities this approach may not be sufficient. This study will investigate whether IMRT can be used to cope with magnetic field dose effects, in particular for target volumes adjacent to irregularly shaped air cavities. Therefore, an inverse treatment planning approach has been designed based on pre-calculated beamlet dose distribution kernels. Using this approach, optimized dose distributions were calculated for B = 1.5 T and for B = 0 T. Investigated target sites include a prostate cancer, a laryngeal cancer and an oropharyngeal cancer. Differences in the dose distribution between B = 0 and 1.5 T were minimal; only the skin dose increased for B = 1.5 T. Homogeneous dose distributions were obtained for target structures adjacent to air cavities without the use of opposing beams. These results show that a 1.5 T magnetic field does not compromise the ability to achieve desired dose distributions with IMRT.\u3c/p\u3

    Feasibility of MRI guided proton therapy:magnetic field dose effects

    No full text
    \u3cp\u3eMany methods exist to improve treatment outcome in radiotherapy. Two of these are image-guided radiotherapy (IGRT) and proton therapy. IGRT aims at a more precise delivery of the radiation, while proton therapy is able to achieve more conformal dose distributions. In order to maximally exploit the sharp dose gradients from proton therapy it has to be combined with soft-tissue based IGRT. MRI-guided photon therapy (currently under development) offers unequalled soft-tissue contrast and real-time image guidance. A hybrid MRI proton therapy system would combine these advantages with the advantageous dose steering capacity of proton therapy. This paper addresses a first technical feasibility issue of this concept, namely the impact of a 0.5 T magnetic field on the dose distribution from a 90 MeV proton beam. In contrast to photon therapy, for MR-guided proton therapy the impact of the magnetic field on the dose distribution is very small. At tissue-air interfaces no effect of the magnetic field on the dose distribution can be detected. This is due to the low-energy of the secondary electrons released by the heavy protons.\u3c/p\u3

    Experimental verification of magnetic field dose effects for the MRI-accelerator

    No full text
    \u3cp\u3eThe MRI-linear accelerator system, currently being developed, is designed such that the patient is irradiated in the presence of a magnetic field. This influences the dose distribution due to the Lorentz force working on the secondary electrons. Simulations have shown that the following dose effects occur: the build-up distance is reduced, the lateral profile becomes asymmetric in the direction orthogonal to the magnetic field and at tissue-air interfaces the dose increases due to returning electrons. In this work, GafChromic film measurements were performed in the presence of a magnetic field to experimentally quantify these dose effects. Depth-dose curves were measured in a PMMA-air-PMMA phantom and the lateral profiles were measured in a homogeneous PMMA phantom with the photon beam protruding over the edges of the phantom. The measurement results confirmed the magnetic field dose effects that were predicted by simulations. This enabled us to verify Geant4 Monte Carlo simulations of these MRI-linac specific dose effects: the relative agreement for the depth-dose curves between measurements and simulations was within 2.2%/1.8 mm. The relative agreement for the lateral profiles was 2.3%/1.7 mm. Overall, the magnetic field dose effects that are expected for irradiation with the MRI-linac can be modelled using Geant4 Monte Carlo simulations within measurement accuracy.\u3c/p\u3

    Integrating a MRI scanner with a 6 MV radiotherapy accelerator:dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons

    No full text
    \u3cp\u3eIn the framework of the development of the integration of a MRI-scanner with a linear accelerator, the influence of a lateral, magnetic field on the dose distribution has to be determined. Dose increase is expected at tissue-air boundaries, due to the electron return effect (ERE): electrons entering air will describe a circular path and return into the phantom causing extra dose deposition. Using IMRT with many beam directions, this exit dose will not constitute a problem. Dose levels behind air cavities will decrease because of the absence of electrons crossing the cavity. The ERE has been demonstrated both by simulation and experiment. Monte Carlo simulations are performed with GEANT4, irradiating a water-air-water phantom in a lateral magnetic field. Also an air tube in water has been simulated, resulting in slightly twisted regions of dose increase and decrease. Experimental demonstration is achieved by film measurement in a perspex-air-perspex phantom in an electromagnet. Although the ERE causes dose increase before air cavities, relatively flat dose profiles can be obtained for the investigated cases using opposite beam configurations. More research will be necessary whether this holds for more realistic geometries with the use of IMRT and whether the ERE can be turned to our advantage when treating small tumour sites at air cavities.\u3c/p\u3

    Magnetic-field-induced dose effects in MR-guided radiotherapy systems:dependence on the magnetic field strength

    No full text
    \u3cp\u3eSeveral institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems.\u3c/p\u3

    Dipole antennas for ultrahigh-field body imaging:a comparison with loop coils

    No full text
    \u3cp\u3eAlthough the potential of dipole antennas for ultrahigh-field (UHF) MRI is largely recognized, they are still relatively unknown to the larger part of the MRI community. This article intends to provide electromagnetic insight into the general operating principles of dipole antennas by numerical simulations. The major part focuses on a comparison study of dipole antennas and loop coils at frequencies of 128, 298 and 400 MHz. This study shows that dipole antennas are only efficient radiofrequency (RF) coils in the presence of a dielectric and/or conducting load. In addition, the conservative electric fields (E-fields) at the ends of a dipole are negligible in comparison with the induced E-fields in the center. Like loop coils, long dipole antennas perform better than short dipoles for deeply located imaging targets and vice versa. When the optimal element is chosen for each depth, loop coils have higher B1 (+) efficiency for shallow depths, whereas dipole antennas have higher B1 (+) efficiency for large depths. The cross-over point depth decreases with increasing frequency: 11.6, 6.2 and 5.0 cm for 128, 298 and 400 MHz, respectively. For single elements, loop coils demonstrate a better B1 (+) /√SARmax ratio for any target depth and any frequency. However, one example study shows that, in an array setup with loop coil overlap for decoupling, this relationship is not straightforward. The overlapping loop coils may generate increased specific absorption rate (SAR) levels under the overlapping parts of the loops, depending on the drive phase settings. Copyright © 2015 John Wiley & Sons, Ltd.\u3c/p\u3

    Validating subject-specific RF and thermal simulations in the calf muscle using MR-based temperature measurements

    No full text
    Purpose: Ongoing discussions occur to translate the safety restrictions on MR scanners from specific absorption rate (SAR) to thermal dose. Therefore, this research focuses on the accuracy of thermal simulations in human subjects during an MR exam, which is fundamental information in that debate. Methods: Radiofrequency (RF) heating experiments were performed on the calves of 13 healthy subjects using a dedicated transmit-receive coil while monitoring the temperature with proton resonance frequency shift (PRFS) thermometry. Subject-specific models and one generic model were used for electromagnetic and thermal simulations using Pennes' bioheat equation, with the blood equilibration constant equaling zero. The simulations were subsequently compared with the experimental results. Results: The mean B1+ equaled 15 μT in the center slice of all volunteers, and 95% of the voxels had errors smaller than 2.8 μT between the simulation and measurement. The intersubject variation in RF power to achieve the required B1+ was 11%. The resulting intersubject variation in median temperature rise was 14%. Thermal simulations underestimated the median temperature increase on average, with 34% in subject-specific models and 28% in the generic model. Conclusions: Although thermal measures are directly coupled to tissue damage and therefore suitable for RF safety assessment, insecurities in the applied thermal modeling limit their estimation accuracy

    Improving peak local SAR prediction in parallel transmit using in situ S-matrix measurements

    No full text
    PURPOSE: Peak local specific absorption rate (pSAR10g) is an important parameter used to determine patient safety during radiofrequency transmission. pSAR10g predictions for parallel transmit MRI are affected by the level of coupling exhibited by a modeled array in the simulation environment. However, simulated array coupling is rarely equal to the physical array coupling. Accurately simulating the physical array coupling may improve the accuracy of predicted SAR levels. METHODS: The scattering parameter matrix (S-matrix) of a prototype 4-channel array was measured in situ using directional couplers installed on a 7T scanner. Agreement between the simulated and measured S-matrix was achieved by using network co-simulation with a modified cost function. B1+ maps acquired in a phantom were compared to B1+ distributions determined from simulations. RESULTS: The modified co-simulation technique forces the simulations to have S-matrices similar to the measured values. A comparison of realistically versus ideally simulated coupling conditions shows that ideally simulated coupling can result in large ( > 40%) error in pSAR10g predictions, even when the array is reasonably tuned. The simulated B1+ distributions match the measured B1+ distributions better when the coupling is accurately simulated. CONCLUSION: Considering the measured array coupling matrix in numerical simulations eliminates a potential confound in pSAR10g prediction. Magn Reson Med, 2016. © 2016 Wiley Periodicals, Inc
    • …
    corecore