20 research outputs found

    Addition of insulin glargine or NPH insulin to metformin monotherapy in poorly controlled type 2 diabetic patients decreases IGF-I bioactivity similarly

    Get PDF
    Aims/hypothesis The aim of this study was to compare IGFI bioactivity 36 weeks after the addition of insulin glargine (A21Gly,B31Arg,B32Arg human insulin) or NPH insulin to metformin therapy in type 2 diabetic patients who had poor glucose control under metformin monotherapy. Methods In the Lantus plus Metformin (LANMET) study, 110 poorly controlled insulin-naive type 2 diabetic patients were randomised to receive metformin with either insulin glargine (G+MET) or NPH insulin (NPH+MET). In the present study, IGF-I bioactivity was measured, retrospectively, in 104 out of the 110 initially included LANMET participants before and after 36 weeks of insulin therapy. IGF-I bioactivity was measured using an IGF-I kinase receptor activation assay. Results After 36 weeks of insulin therapy, insulin doses were comparable between the G+MET (68±5.7 U/day) and NPH+MET (71±6.2 U/day) groups (p=0.68). Before insulin therapy, circulating IGF-I bioactivity was similar between the G+MET (134±9 pmol/l) and NPH+MET (135 ±10 pmol/l) groups (p=0.83). After 36 weeks, IGF-I bioactivity had decreased significantly (p=0.001) and did not differ between the G+MET (116±9 pmol/l) and NPH+MET (117± 10 pmol/l) groups (p=0.91). At baseline and after insulin therapy, total IGF-I concentrations were comparable in both groups (baseline: G+MET 13.3±1.0 vs NPH+MET 13.3± 1.0 nmol/l, p=0.97; and 36 weeks: 13.4±1.0 vs 13.1± 0.9 nmol/l, p=0.71). Total IGF-I concentration did not change during insulin therapy (13.3±0.7 vs 13.3±0.7 nmol/l, baseline vs 36 weeks, p=0.86). Conclusions/interpretation Addition of insulin glargine or NPH insulin to metformin monotherapy in poorly controlled type 2 diabetic patients decreases serum IGF-I bioactivity in a similar manner

    Molecular Characterisation of Long-Acting Insulin Analogues in Comparison with Human Insulin, IGF-1 and Insulin X10

    Get PDF
    AIMS/HYPOTHESIS: There is controversy with respect to molecular characteristics of insulin analogues. We report a series of experiments forming a comprehensive characterisation of the long acting insulin analogues, glargine and detemir, in comparison with human insulin, IGF-1, and the super-mitogenic insulin, X10. METHODS: We measured binding of ligands to membrane-bound and solubilised receptors, receptor activation and mitogenicity in a number of cell types. RESULTS: Detemir and glargine each displayed a balanced affinity for insulin receptor (IR) isoforms A and B. This was also true for X10, whereas IGF-1 had a higher affinity for IR-A than IR-B. X10 and glargine both exhibited a higher relative IGF-1R than IR binding affinity, whereas detemir displayed an IGF-1R:IR binding ratio of ≤ 1. Ligands with high relative IGF-1R affinity also had high affinity for IR/IGF-1R hybrid receptors. In general, the relative binding affinities of the analogues were reflected in their ability to phosphorylate the IR and IGF-1R. Detailed analysis revealed that X10, in contrast to the other ligands, seemed to evoke a preferential phosphorylation of juxtamembrane and kinase domain phosphorylation sites of the IR. Sustained phosphorylation was only observed from the IR after stimulation with X10, and after stimulation with IGF-1 from the IGF-1R. Both X10 and glargine showed an increased mitogenic potency compared to human insulin in cells expressing many IGF-1Rs, whereas only X10 showed increased mitogenicity in cells expressing many IRs. CONCLUSIONS: Detailed analysis of receptor binding, activation and in vitro mitogenicity indicated no molecular safety concern with detemir

    Differences in bioactivity between human insulin and insulin analogues approved for therapeutic use- compilation of reports from the past 20 years

    Get PDF
    In order to provide comprehensive information on the differences in bioactivity between human insulin and insulin analogues, published in vitro comparisons of human insulin and the rapid acting analogues insulin lispro (Humalog®), insulin aspart ( NovoRapid®), insulin glulisine (Apidra®), and the slow acting analogues insulin glargine (Lantus®), and insulin detemir (Levemir®) were gathered from the past 20 years (except for receptor binding studies). A total of 50 reports were retrieved, with great heterogeneity among study methodology. However, various differences in bioactivity compared to human insulin were obvious (e.g. differences in effects on metabolism, mitogenesis, apoptosis, intracellular signalling, thrombocyte function, protein degradation). Whether or not these differences have clinical bearings (and among which patient populations) remains to be determined

    Changes in circulating IGF1 receptor stimulating activity do not parallel changes in total IGF1 during GH treatment of GH-deficient adults

    No full text
    CONTEXT: Previously we demonstrated that IGF1 receptor stimulating activity (IGF1RSA) offers advantages in diagnostic evaluation of adult GH deficiency (GHD). It is unknown whether IGF1RSA can be used to monitor GH therapy. OBJECTIVE: To investigate the value of circulating IGF1RSA for monitoring GH therapy. DESIGN/METHODS: 106 patients (54 m; 52 f) diagnosed with GHD were included; 22 were GH-naïve, 84 were already on GH treatment and discontinued therapy 4 weeks before baseline values were established. IGF1RSA was determined by the IGF1R kinase receptor activating assay, total IGF1 by immunoassay (Immulite). GH doses were titrated to achieve total IGF1 levels within the normal range. RESULTS: After 12 months, total IGF1 and IGF1RSA increased significantly (total IGF1 from 8.1 (95% CI 7.3-8.9) to 14.9 (95% CI 13.5-16.4) nmol/l and IGF1RSA from 115 (95% CI 104-127) to 181 (95% CI 162-202) pmol/l). After 12 months, total IGF1 normalized in 81% of patients, IGF1RSA in 51% and remained below normal in more than 40% of patients in whom total IGF1 had normalized. CONCLUSIONS: During 12 months of GH treatment, changes in IGF1RSA did not parallel changes in total IGF1. Despite normalization of total IGF1, IGF1RSA remained subnormal in a considerable proportion of patients. At present our results have no short-term consequences for GH therapy of GHD patients. However, based on our findings we propose future studies to examine whether titrating GH dose against IGF1RSA results in a better clinical outcome than titrating against total IGF1
    corecore