2 research outputs found

    A wrinkle in flight: the role of elastin fibres in the mechanical behaviour of bat wing membranes

    No full text
    Bats fly using a thin wing membrane composed of compliant, anisotropic skin. Wing membrane skin deforms dramatically as bats fly, and its three-dimensional configurations depend, in large part, on the mechanical behaviour of the tissue. Large, macroscopic elastin fibres are an unusual mechanical element found in the skin of bat wings. We characterize the fibre orientation and demonstrate that elastin fibres are responsible for the distinctive wrinkles in the surrounding membrane matrix. Uniaxial mechanical testing of the wing membrane, both parallel and perpendicular to elastin fibres, is used to distinguish the contribution of elastin and the surrounding matrix to the overall membrane mechanical behaviour. We find that the matrix is isotropic within the plane of the membrane and responsible for bearing load at high stress; elastin fibres are responsible for membrane anisotropy and only contribute substantially to load bearing at very low stress. The architecture of elastin fibres provides the extreme extensibility and self-folding/self-packing of the wing membrane skin. We relate these findings to flight with membrane wings and discuss the aeromechanical significance of elastin fibre pre-stress, membrane excess length, and how these parameters may aid bats in resisting gusts and preventing membrane flutter

    The stiffness of living tissues and its implications for tissue engineering

    No full text
    The past 20 years have witnessed ever- growing evidence that the mechanical properties of biological tissues, from nanoscale to macroscale dimensions, are fundamental for cellular behaviour and consequent tissue functionality. This knowledge, combined with previously known biochemical cues, has greatly advanced the field of biomaterial development, tissue engineering and regenerative medicine. It is now established that approaches to engineer biological tissues must integrate and approximate the mechanics, both static and dynamic, of native tissues. Nevertheless, the literature on the mechanical properties of biological tissues differs greatly in methodology, and the available data are widely dispersed. This Review gathers together the most important data on the stiffness of living tissues and discusses the intricacies of tissue stiffness from a materials perspective, highlighting the main challenges associated with engineering lifelike tissues and proposing a unified view of this as yet unreported topic. Emerging advances that might pave the way for the next decadeâ s take on bioengineered tissue stiffness are also presented, and differences and similarities between tissues in health and disease are discussed, along with various techniques for characterizing tissue stiffness at various dimensions from individual cells to organs.The authors would like to acknowledge financial support from the European Research Council, grant agreement ERC-2012-ADG 20120216-321266 (project ComplexiTE). C.F.G. acknowledges scholarship grant no. PD/BD/135253/2017 from Fundação para a Ciência e Tecnologia (FCT). The authors also thank the peer-reviewers for the constructive comments and suggestions that helped to shape this manuscript
    corecore