185 research outputs found
Prevalence and etiology of false normal aEEG recordings in neonatal hypoxic-ischaemic encephalopathy.
BACKGROUND: Amplitude-integrated electroencephalography (aEEG) is a useful tool to determine the severity of neonatal hypoxic-ischemic encephalopathy (HIE). Our aim was to assess the prevalence and study the origin of false normal aEEG recordings based on 85 aEEG recordings registered before six hours of age. METHODS: Raw EEG recordings were reevaluated retrospectively with Fourier analysis to identify and describe the frequency patterns of the raw EEG signal, in cases with inconsistent aEEG recordings and clinical symptoms. Power spectral density curves, power (P) and median frequency (MF) were determined using the raw EEG. In 7 patients non-depolarizing muscle relaxant (NDMR) exposure was found. The EEG sections were analyzed and compared before and after NDMR administration. RESULTS: The reevaluation found that the aEEG was truly normal in 4 neonates. In 3 neonates, high voltage electrocardiographic (ECG) artifacts were found with flat trace on raw EEG. High frequency component (HFC) was found as a cause of normal appearing aEEG in 10 neonates. HFC disappeared while P and MF decreased significantly upon NDMR administration in each observed case. CONCLUSION: Occurrence of false normal aEEG background pattern is relatively high in neonates with HIE and hypothermia. High frequency EEG artifacts suggestive of shivering were found to be the most common cause of false normal aEEG in hypothermic neonates while high voltage ECG artifacts are less common
Neural correlates of sexual cue reactivity in individuals with and without compulsive sexual behaviours
Although compulsive sexual behaviour (CSB) has been conceptualized as a "behavioural" addiction and common or overlapping neural circuits may govern the processing of natural and drug rewards, little is known regarding the responses to sexually explicit materials in individuals with and without CSB. Here, the processing of cues of varying sexual content was assessed in individuals with and without CSB, focusing on neural regions identified in prior studies of drug-cue reactivity. 19 CSB subjects and 19 healthy volunteers were assessed using functional MRI comparing sexually explicit videos with non-sexual exciting videos. Ratings of sexual desire and liking were obtained. Relative to healthy volunteers, CSB subjects had greater desire but similar liking scores in response to the sexually explicit videos. Exposure to sexually explicit cues in CSB compared to non-CSB subjects was associated with activation of the dorsal anterior cingulate, ventral striatum and amygdala. Functional connectivity of the dorsal anterior cingulate-ventral striatum-amygdala network was associated with subjective sexual desire (but not liking) to a greater degree in CSB relative to non-CSB subjects. The dissociation between desire or wanting and liking is consistent with theories of incentive motivation underlying CSB as in drug addictions. Neural differences in the processing of sexual-cue reactivity were identified in CSB subjects in regions previously implicated in drug-cue reactivity studies. The greater engagement of corticostriatal limbic circuitry in CSB following exposure to sexual cues suggests neural mechanisms underlying CSB and potential biological targets for interventions
Integrating the Hierarchical Taxonomy of Psychopathology (HiTOP) Into Clinical Practice
Objective: Diagnosis is a cornerstone of clinical practice for mental health care providers, yet traditional diagnostic systems have well-known shortcomings, including inadequate reliability, high comorbidity, and marked within-diagnosis heterogeneity. The Hierarchical Taxonomy of Psychopathology (HiTOP) is a data-driven, hierarchically based alternative to traditional classifications that conceptualizes psychopathology as a set of dimensions organized into increasingly broad, transdiagnostic spectra. Prior work has shown that using a dimensional approach improves reliability and validity, but translating a model like HiTOP into a workable system that is useful for health care providers remains a major challenge. / Method: The present work outlines the HiTOP model and describes the core principles to guide its integration into clinical practice. Results: Potential advantages and limitations of the HiTOP model for clinical utility are reviewed, including with respect to case conceptualization and treatment planning. A HiTOP approach to practice is illustrated and contrasted with an approach based on traditional nosology. Common barriers to using HiTOP in real-world health care settings and solutions to these barriers are discussed. / Conclusions: HiTOP represents a viable alternative to classifying mental illness that can be integrated into practice today, although research is needed to further establish its utility
Motivation and Motor Control: Hemispheric Specialization for Approach Motivation Reverses with Handedness
(SSH), according to which the hemispheric laterality of affective motivation depends on the laterality of motor control for the dominant hand (i.e., the “sword hand," used preferentially to perform approach actions) and the nondominant hand (i.e., the “shield hand," used preferentially to perform avoidance actions).To determine whether the laterality of approach motivation varies with handedness, we measured alpha-band power (an inverse index of neural activity) in right- and left-handers during resting-state electroencephalography and analyzed hemispheric alpha-power asymmetries as a function of the participants' trait approach motivational tendencies. Stronger approach motivation was associated with more left-hemisphere activity in right-handers, but with more right-hemisphere activity in left-handers.The hemispheric correlates of approach motivation reversed between right- and left-handers, consistent with the way they typically use their dominant and nondominant hands to perform approach and avoidance actions. In both right- and left-handers, approach motivation was lateralized to the same hemisphere that controls the dominant hand. This covariation between neural systems for action and emotion provides initial support for the SSH
Revealing a brain network endophenotype in families with idiopathic generalised epilepsy
Idiopathic generalised epilepsy (IGE) has a genetic basis. The mechanism of seizure expression is not fully known, but is assumed to involve large-scale brain networks. We hypothesised that abnormal brain network properties would be detected using EEG in patients with IGE, and would be manifest as a familial endophenotype in their unaffected first-degree relatives. We studied 117 participants: 35 patients with IGE, 42 unaffected first-degree relatives, and 40 normal controls, using scalp EEG. Graph theory was used to describe brain network topology in five frequency bands for each subject. Frequency bands were chosen based on a published Spectral Factor Analysis study which demonstrated these bands to be optimally robust and independent. Groups were compared, using Bonferroni correction to account for nonindependent measures and multiple groups. Degree distribution variance was greater in patients and relatives than controls in the 6-9 Hz band (p = 0.0005, p = 0.0009 respectively). Mean degree was greater in patients than healthy controls in the 6-9 Hz band (p = 0.0064). Clustering coefficient was higher in patients and relatives than controls in the 6-9 Hz band (p = 0.0025, p = 0.0013). Characteristic path length did not differ between groups. No differences were found between patients and unaffected relatives. These findings suggest brain network topology differs between patients with IGE and normal controls, and that some of these network measures show similar deviations in patients and in unaffected relatives who do not have epilepsy. This suggests brain network topology may be an inherited endophenotype of IGE, present in unaffected relatives who do not have epilepsy, as well as in affected patients. We propose that abnormal brain network topology may be an endophenotype of IGE, though not in itself sufficient to cause epilepsy
Recommended from our members
Confirmation bias in the utilization of others' opinion strength
Humans tend to discount information that undermines past choices and judgments. This confirmation bias has significant impact on domains ranging from politics to science and education. Little is known about the mechanisms underlying this fundamental characteristic of belief formation. Here we report a mechanism underlying the confirmation bias. Specifically, we provide evidence for a failure to use the strength of others' disconfirming opinions to alter confidence in judgments, but adequate use when opinions are confirmatory. This bias is related to reduced neural sensitivity to the strength of others' opinions in the posterior medial prefrontal cortex when opinions are disconfirming. Our results demonstrate that existing judgments alter the neural representation of information strength, leaving the individual less likely to alter opinions in the face of disagreement
Novel Primate Model of Serotonin Transporter Genetic Polymorphisms Associated with Gene Expression, Anxiety and Sensitivity to Antidepressants
This is the final version of the article. It first appeared from Nature Publishing Group via https://dx.doi.org/10.1038/npp.2016.41Genetic polymorphisms in the repeat upstream region of the serotonin transporter gene (SLC6A4) are associated with individual differences in stress reactivity, vulnerability to affective disorders and response to pharmacotherapy. However, the molecular, neurodevelopmental and psychopharmacological mechanisms underlying the link between SLC6A4 polymorphisms and the emotionally vulnerable phenotype are not fully understood. Thus, using the marmoset monkey Callithrix jacchus we characterize here a new neurobiological model to help to address these questions. We first sequenced the marmoset SLC6A4 promoter and identified a double nucleotide polymorphism (−2053AC/CT) and two single nucleotide polymorphisms (−2022C/T and −1592G/C) within the repeat upstream region. We showed their association with gene expression using in vivo quantitative PCR and with affective behavior using a primate test of anxiety (human intruder test). The low-expressing haplotype (AC/C/G) was linked with high anxiety whilst the high-expressing one (CT/T/C) was associated with an active coping strategy in response to threat. Pharmacological challenge with an acute dose of the selective serotonin reuptake inhibitor (SSRI), citalopram, revealed a genotype-dependent behavioral response. Whilst individuals homozygous for the high anxiety-related haplotype AC/C/G exhibited a dose-dependent, anxiogenic response, individuals homozygous for the low anxiety-related haplotype CT/T/C showed an opposing, dose-dependent anxiolytic effect. These findings provide a novel genetic and behavioral primate model to study the molecular, neurodevelopmental and psychopharmacological mechanisms that underlie genetic variation-associated complex behaviors, with specific implications for the understanding of normal and abnormal serotonin actions and the development of personalized pharmacological treatments for psychiatric disorders.Work was supported by an MRC Programme (ACR; G0901884) and performed within the Behavioural and Clinical Neuroscience Institute, University of Cambridge, funded jointly by the Wellcome Trust and MRC. AMS was supported by a McDonnell Foundation grant (PI’s: E. Phelps, T.W. Robbins; Co-Investigators: ACR and J. LeDoux; 22002015501) and currently supported by MRC; YS supported by the Long Term Student Support Program provided by Osaka University and the Ministry of Education, Culture, Sports, Science and Technology of Japan; HC supported by MRC Career Development Award and ACFS/MI supported by grants from the MRC and Wellcome Trust. GC supported by the Behavioural and Clinical Neuroscience Institute, Cambridge, United Kingdom. EHSS was self-funded
Neural responses to others’ pain vary with psychopathic traits in healthy adult males
Disrupted empathic processing is a core feature of psychopathy. Neuroimaging data have suggested that individuals with high levels of psychopathic traits show atypical responses to others' pain in a network of brain regions typically recruited during empathic processing (anterior insula, inferior frontal gyrus, and mid- and anterior cingulate cortex). Here, we investigated whether neural responses to others' pain vary with psychopathic traits within the general population in a similar manner to that found in individuals at the extreme end of the continuum. As predicted, variation in psychopathic traits was associated with variation in neural responses to others' pain in the network of brain regions typically engaged during empathic processing. Consistent with previous research, our findings indicated the presence of suppressor effects in the association of levels of the affective-interpersonal and lifestyle-antisocial dimensions of psychopathy with neural responses to others' pain. That is, after controlling for the influence of the other dimension, higher affective-interpersonal psychopathic traits were associated with reduced neural responses to others' pain, whilst higher lifestyle-antisocial psychopathic traits were associated with increased neural responses to others' pain. Our findings provide further evidence that atypical function in this network might represent neural markers of disrupted emotional and empathic processing; that the two dimensions of psychopathy might tap into distinct underlying vulnerabilities; and, most importantly, that the relationships observed at the extreme end of the psychopathy spectrum apply to the nonclinical distribution of these traits, providing further evidence for continuities in the mechanisms underlying psychopathic traits across the general population
- …